Advertisement

The crystal structure of sarkinite, Mn2AsO4(OH)

  • A. Dal Negro
  • G. Giuseppetti
  • J. M. Martin Pozas
Article

Summary

Sarkinite is a basic manganese arsenate, Mn2AsO4(OH). The lattice parameters are:a=12.779 (2) Å,b=13.596 (2) Å,c=10.208 (2) Å, β=108°53′ (6′). Space groupP21/a,Z=16. The crystal structure has been solved by direct methods from three-dimensional X-ray diffractometer data and refined by least-squares methods toR=0.052 for 3519 independent reflections. The crystal structure is built up by a three-dimensional framework of MnO4(OH)2 octahedra, MnO4(OH) trigonal bipyramids and AsO4 tetrahedra, as found in wagnerite. Isotypy of sarkinite with triploidite is confirmed.

Keywords

Reflection Crystal Structure Manganese Arsenate Geochemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Die Kristallstruktur des Sarkinits, Mn2AsO4(OH)

Zusammenfassung

Die Kristallstruktur des basischen Manganarsenates Sarkinit, Mn2AsO4(OH), mit den Gitterkonstantena=12,779 (2) Å,b=13,596 (2) Å,c=10,208 (2) Å, β=108°53′ (6′). RaumgruppeP21/a,Z=16, wurde mit dreidimensionalen Röntgendiffraktometermessungen durch direkte Methoden gelöst und nach dem kleinste-Quadrate-Verfahren verfeinert (R=0,052 für 3519 unabhängige Reflexe). Die Struktur besteht aus einem dreidimensionalen Gerüst aus MnO4(OH)2-Oktaedern, trigonalen Bipyramiden von MnO4(OH) und AsO4-Tetraedern wie in Wagnerit. Die Isotypie von Sarkinit mit Triploidit wurde bestätigt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Busing, W. R., K. O. Martin, andH. A. Levy, 1964: A Fortran crystallographic function and error program. Oak Ridge National Laboratory (U. S. Clearinghouse Fed. Sci. Tech. Info.) Rep. ORNL-TM-306.Google Scholar
  2. Coda, A., G. Giuseppetti, andC. Tadini, 1967: The crystal structure of wagnerite. Acc. Naz. Lincei, Serie VIII,43, 211–224.Google Scholar
  3. Cromer, D. T., andD. Liberman, 1970: Relativistic calculation of anomalous scattering factors for X-rays. J. Chem. Phys.53, 1891.Google Scholar
  4. Germain, G., andM. M. Woolfson, 1968: On the application of phase relationships to complex structures. Acta Cryst.B 24, 91–96.Google Scholar
  5. Hägele, G., 1938: Sarkinit und Triploidit. Zentralbl. Min. Geol. (A), Jg.1938 267–273.Google Scholar
  6. Hanson, H. P., F. Herman, J. D. Lea, andS. Skilmann, 1964: HFS atomic scattering factors. Acta Cryst.17, 1040–1044.Google Scholar
  7. Kopfmann, G., andR. Huber, 1968: A method of absorption correction by X-ray intensity measurements. Acta Cryst.A 24, 348–351.Google Scholar
  8. Moore, P. B., 1968a: Crystal chemistry of the basic manganese arsenates: III. The crystal structure of eveite Mn2(OH)AsO4. Amer. Min.53, 1841–1845.Google Scholar
  9. —, 1968b: Crystal chemistry of the basic manganese arsenate minerals: II. The crystal structure of allactite. Amer. Min.53, 733–741.Google Scholar
  10. —, 1971: Crystal chemistry of the basic manganese arsenates: V. Mixed manganese coordination in the atomic arrangement of arsenoclasite. Amer. Min.56, 1539–1552.Google Scholar
  11. Richmond, W. E., 1940: Crystal chemistry of the phosphates, arsenates and vanadates of the type A2XO4(Z). Amer. Min.25, 441–479.Google Scholar
  12. Waldrop, L., 1970: The crystal structure of triploidite and its relation to the structures of other minerals of the triplite-triploidite group. Z. Krist.,131, 1–20.Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • A. Dal Negro
    • 1
  • G. Giuseppetti
    • 1
  • J. M. Martin Pozas
    • 2
  1. 1.Centro di Cristallografia Strutturale del C.N.R.-Istituto di Mineralogia dell'Università di PaviaPaviaItaly
  2. 2.Instituto “Lucas Mallada” (S. Mineralogia)MadridSpain

Personalised recommendations