Advertisement

Radiophysics and Quantum Electronics

, Volume 16, Issue 11, pp 1307–1316 | Cite as

Use of the averaged variational principle for describing multiwave interactions of elastic surface waves

  • V. P. Reutov
Article

Keywords

Surface Wave Variational Principle Elastic Surface Elastic Surface Wave Multiwave Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. V. Gaponov, L. A. Ostrovskii, and M. I. Rabinovich, Izv. VUZ, Radiofiz.,13, No. 2, 163 (1970).Google Scholar
  2. 2.
    M. L. Rabinovich and A. A. Rozenblyum, Prikl. Matem. i Mekh.,36, No. 2, 330 (1972).Google Scholar
  3. 3.
    M. I. Rabinovich and A. A. Rozenblyum, Dokl. Akad. Nauk SSSR,199, No. 3, 575, (1971).Google Scholar
  4. 4.
    D. B. Whitham, in: Nonlinear Theory of Wave Propagation [Russian translation], Izd. Mir, Moscow (1970).Google Scholar
  5. 5.
    W. F. Simmons, Proc. Roy. Soc. Lond.,A309, 551 (1969).Google Scholar
  6. 6.
    L. K. Zarembo and V. A. Krasil'nikov, Usp. Fiz. Nauk,102, No. 4, 549 (1970).Google Scholar
  7. 7.
    P. O. Lopen, J. Appl. Phys.,39, No. 12, 5400 (1968).Google Scholar
  8. 8.
    E. G. Lean and C. C. Tseng, J. Appl. Phys.,41, No. 10, 3912 (1970).Google Scholar
  9. 9.
    R. N. Thurston, in: Physical Acoustics [Russian translation], Vol. 1, Part A, Izd. Nauka, Moscow (1965).Google Scholar
  10. 10.
    F. D. Murnaghan, Finite Deformation of an Elastic Solid, John Wiley, New York (1951).Google Scholar
  11. 11.
    R. N. Thurston and K. Brugger, Phys. Rev.,133, No. 6A, A1604 (1964).Google Scholar
  12. 12.
    L. D. Landau and E. M. Lifshits, Theory of Elasticity, Addison-Wesley (1971).Google Scholar
  13. 13.
    E. N. Pelinovskii and M. I. Rabinovich, Izv. VUZ, Radiofiz.,14, No. 9, 1373 (1971).Google Scholar
  14. 14.
    F. Press and J. Healy, J. Appl. Phys.,28, No. 11, 1323 (1957).Google Scholar
  15. 15.
    P. J. King and F. W. Sheard, J. Appl. Phys.,40, 5189 (1969).Google Scholar
  16. 16.
    D. R. Bland, Nonlinear Dynamic Elasticity Theory, Xerox College Publishing (1969).Google Scholar
  17. 17.
    É. A. Coddington and N. Levinson, Theory of Ordinary Differential E quations, McGraw-Hill (1955).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • V. P. Reutov

There are no affiliations available

Personalised recommendations