Meteorology and Atmospheric Physics

, Volume 51, Issue 1–2, pp 55–71 | Cite as

A comparison of vertical mixing schemes embedded in an OGCM with application to air-sea interactions and the evolution of SST anomalies

  • C. J. C. Reason
  • I. Kühnel
  • B. Henderson-Sellers
Article

Summary

The performance of three different vertical mixing schemes embedded in a global coarse resolution OGCM under both annual and monthly mean forcing are compared. These schemes are the integral model of Kraus and Turner and the differential parametrisations of Pacanowski and Philander and Henderson-Sellers (EDD1 scheme). The simulations of mean climatological conditions suggest that, with respect to climate change studies, the Kraus-Turner and the EDD1 schemes are overall more robust than the Pacanowski and Philander parametrisation. With respect to anomalous climatic conditions (i.e. decay of imposed SST anomalies), all three schemes indicate that the lifespan and penetration depth of a cold anomaly is somewhat greater than for a warm one. Also, the EDD1 scheme portrays the evolution process of the SST anomalies somewhat differently than the other two schemes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamec, D., Elsberry, R. L., Garwood, R. W., Jr., Haney, R. L., 1981: An embedded mixed layer-ocean circulation model.Dyn. Atmos. Oceans,5, 69–96.Google Scholar
  2. Alderson, S. G., 1990: On embedding a mixed layer model into an ocean general circulation model.Dyn. Atmos. Oceans,15, 59–86.Google Scholar
  3. Bryan, K., 1969: A numerical method for the study of the circulation of the world ocean.J. Computat. Phys.,4, 347–376.Google Scholar
  4. Bryan, K., Lewis, L. J., 1979: A water mass model of the world ocean.J. Geophys. Res.,84, 2503–2517.Google Scholar
  5. Cox, M. D., 1984: A primitive equation, 3-dimensional model of the ocean.GFDLOcean Group Technical Report No. 1, Princeton University.Google Scholar
  6. Esbensen, S. K., Kushnir, Y., 1981: The heat budget of the global ocean: an atlas based on estimates from surface marine observations.Oregon State University Climate Research Institute Report,29, 27 pp.Google Scholar
  7. Foreman, S. J., 1986: Ocean and atmosphere interact.Meteor. Mazine. 115, 358–361.Google Scholar
  8. Gaspar, Ph., 1988: Modelling the seasonal cycle of the upper ocean.J. Phys. Oceanogr.,18, 161–180.Google Scholar
  9. Gaspar, Ph., Gregoris, Y., Stull, R., Boissier, Ch., 1988: Long-term simulations of upper ocean vertical mixing using models of various types. In: Nihoul, J. C. J., Jamart, B. M. (eds.)Small-Scale Turbulence and Mixing in the Ocean. 19th International Liege Colloquim on Ocean Hydrodynamics, Elsevier, 169–184.Google Scholar
  10. Hellerman, S., Rosenstein, M., 1983: Normal monthly wind-stress over the world ocean with error estimates.J. Phys. Oceanogr.,13, 1093–1104.Google Scholar
  11. Henderson-Sellers, B., 1985: New formulation of eddy diffusion thermocline models.Appl. Math. Medel.,9, 441–446.Google Scholar
  12. Henderson-Sellers, B., 1988: Embedding stratification models in ocean general circulation climate models. In: Nihoul, J. C. J., Jamart, B. M. (eds.)Small-Scale Turbulence and Mixing in the Ocean. 19th International Liege Colloquim on Ocean Hydrohynamics. Elsevier, 95–107.Google Scholar
  13. Kraus, E. B., 1988: Merits and defects of different approaches to mixed layer modelling In: Nihoul, J. C. J., Jamart, B. M. (eds.)Small-Scale Turbulence and Mixing in the Ocean. 19th International Liege Colloquim on Ocean Hydrodynamics. Elsevier, 37–50.Google Scholar
  14. Kraus, E. B., Turner, J. S., 1967: A one-dimensional model of the seasonal thermocline. II: The general theory and its consequences.Tellus,19, 98–105.Google Scholar
  15. Kraus, E. B., Bleck, R., Hanson, H. P., 1988: The inclusion of a surface mixed-layer in a large-scale circulation model. In: Nihoul, J. C. J., Jamart, B. M. (eds.)Small-Scale Turbulence and Mixing in the Ocean. 19th International Liege Colloquim on Ocean Hydrodynamics. Elsevier, 51–62.Google Scholar
  16. Kühnel, I., Henderson-Sellers, B., 1991: Mixed layer modelling with respect to ocean-atmosphere interactions in the eastern Indian Ocean.Meterol. Atmos. Phys. 46, 51–64.Google Scholar
  17. Levitus, S., 1982: Climatological atlas of the world ocean. NOAA Professional Paper,13, U.S. Govt. Printing Office, 173 pp.Google Scholar
  18. Mellor, G. L., Yamada, T., 1982: Development of a turbulence closure model for geophysical fluid problems.Rev. Geophys. Space Phys.,20, 851–857.Google Scholar
  19. Moore, A. M., Reason, C. J. C., 1993: The response of a global ocean general circulation model to climatological surface boundary conditions for temperature and salinity.J. Phys. Oceanogr. (in press).Google Scholar
  20. Niiler, P. P., Kraus, E. B., 1977: One-dimensional models of the upper oceans. In: Kraus, E. B. (eds.)Modelling and Prediction of the Upper Layers of the Ocean. Pergamon, 143–172.Google Scholar
  21. Pacanowski, R. C., Philander, S. G. H., 1981: Parameterization of vertical mixing in numerical models of tropical oceans.J. Phys. Oceanogr.,11, 1443–1451.Google Scholar
  22. Philander, S. G. H., 1990:El Nino, La Nina, and the Southern Oscillation. San Diego: Academic Press, 289 pp.Google Scholar
  23. Reason, C. J. C., 1993: On the effect of ENSO precipitation anomalies in a global OGCM.Clim. Dyn. (in press).Google Scholar
  24. Rosati, A., Miyakoda, K., 1988: A general circulation model for upper ocean simulation.J. Phys. Oceanogr.,18, 1601–1626.Google Scholar
  25. Semtner, A. J. Jr., Chervin, R. M., 1988: A simulation of the global ocean circulation with resolved eddies.J. Geophys. Res. 93, 15, 502–515, 222.Google Scholar
  26. Smith, T. N., Gordon, H. B., 1992: Simulations of precipitation and atmospheric circulation changes associated with warm SSTs: results from an ensemble of long term integrations with idealized anomalies.Climate Dyn.,7, 141–153.Google Scholar
  27. Verron, J., Le Provost, C., 1991: Response of eddy-resolved general circulation numerical models to asymmetrical wind forcing.Dyn. Atmos. Oceans. 15, 505–533.Google Scholar
  28. Wacongne, S., 1988.The Dynamics of the Equatorial Undercurrent and its Termination. PhD thesis, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • C. J. C. Reason
    • 1
  • I. Kühnel
    • 2
  • B. Henderson-Sellers
    • 2
  1. 1.CSIRO Atmospheric ResearchAustralia
  2. 2.Information SystemsUniversity of New South WalesKensingtonAustralia

Personalised recommendations