Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Arithmeticality of nonuniform lattices

  • 45 Accesses

  • 1 Citations

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    A. Borel and G. Tits, Matematika,11, No. 1, 43–111 (1967).

  2. 2.

    I. I. Pyatetskii-Shapiro, Proceedings of the International Congress of Mathematicians [Russian translation], Mir, Moscow (1968), pp. 232–247.

  3. 3.

    A. Borel and Harish-Chandra, Matematika,8, No. 2, 19–72 (1964).

  4. 4.

    A. Sel'berg, Matematika,16, No. 4, 74–91 (1972).

  5. 5.

    S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press (1962).

  6. 6.

    I. Pyatetskii-Shapiro, Trudy Mosk. Matem. O-va,18, 3–18 (1968).

  7. 7.

    A. Selberg, Proc. Int. Cong. Math., Uppsala (1963), pp. 177–189.

  8. 8.

    G. A. Margulis, Proc. Summer School on Representation Theory, Budapest (1973).

  9. 9.

    G. D. Mostow, Actes Cong. Int. Math.,2, Paris (1971), pp. 187–198.

  10. 10.

    H. Garland and M. S. Raghunathan, Ann. Math.,92, 279–326 (1970).

  11. 11.

    A. Sel'berg, Matematika,6, No. 3, 3–15 (1962).

  12. 12.

    É. B. Vinberg, Matem. Sb.,72, 471–488 (1967).

  13. 13.

    A. Borel, Matematika,12, No. 5, 34–90 (1968).

  14. 14.

    A. Borel and G. Tits, Matematika,16, No. 3, 3–11 (1972).

Download references

Additional information

Institute of Information-Transmission Problems, Academy of Sciences of the USSR. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 7, No. 3, pp. 88–89, July–September, 1973.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Margulis, G.A. Arithmeticality of nonuniform lattices. Funct Anal Its Appl 7, 245–246 (1973). https://doi.org/10.1007/BF01080708

Download citation

Keywords

  • Functional Analysis
  • Nonuniform Lattice