Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Bilateral estimates of polynomial conservation laws for the KdV equation and their applications

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    S. P. Novikov, Funkts. Anal. Prilozhen.,8, No. 3, 54–66 (1974).

  2. 2.

    P. D. Lax, Commun. Pure Appl. Math.,28, 141–188 (1975).

  3. 3.

    H. McKean and P. van Moerbeke, Inv. Math.,30, 174–217 (1975).

  4. 4.

    S. A. Molchanov and M. V. Novitskii, Dokl. Akad. Nauk SSSR,286, No. 2, 287–291 (1986).

  5. 5.

    M. V. Novitskii, Mat. Sb.,11, 416–428 (1985).

  6. 6.

    E. Trubowitz, Commun. Pure Appl. Math.,30, 321–337 (1977).

  7. 7.

    Kh. M. Mkoyan, Dokl. Akad. Nauk ArmSSR,60, No. 4, 212–217 (1975).

  8. 8.

    V. A. Marchenko and I. V. Ostrovskii, Mat. Sb.,97, 540–606 (1975).

  9. 9.

    J. Brüning, Commun. Part. Diff. Equat.,9, 687–698 (1984).

Download references

Additional information

Low-Temperature Physicotechnical Institute, Academy of Sciences of the Ukrainian SSR. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 23, No. 3, pp. 78–79, July–September, 1989.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Novitskii, M.V. Bilateral estimates of polynomial conservation laws for the KdV equation and their applications. Funct Anal Its Appl 23, 238–240 (1989). https://doi.org/10.1007/BF01079538

Download citation

Keywords

  • Functional Analysis
  • Bilateral Estimate
  • Polynomial Conservation