Functional models for representations of current algebras and semi-infinite Schubert cells
Article
- 149 Downloads
- 34 Citations
Keywords
Functional Analysis Functional Model Current Algebra Schubert Cell
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.V. Schechtman and A. Varchenko, “Arrangements of hyperplanes and Lie algebra homology,” Invent. Math.,106, 139–194 (1991).Google Scholar
- 2.A. A. Beilinson and V. A. Ginzburg, “Infinitesimal structure of moduli spaces ofG-bundles,” Duke Math. J. (IMRN), No. 4, 63–74 (1992).Google Scholar
- 3.J. Lepowsky and M. Primc, “Structure of the standard modules for the affine Lie algebraA 1(1),” Contemporary Mathematics, Vol. 46, AMS, Providence (1985).Google Scholar
- 4.V. G. Kac, Infinite-Dimensional Lie Algebras, Cambridge University Press, Cambridge (1990).Google Scholar
- 5.A. Pressley and G. Segal, Loop Groups, Clarendon Press, Oxford (1988).Google Scholar
- 6.M. Kashiwara, “The flag manifold of Kac—Moody Lie algebra,” In: Algebraic Analysis, Geometry, and Number Theory, edited by J.-I. Igusa.Google Scholar
- 7.B. L. Feigin and E. V. Frenkel, “Coinvariants of nilpotent subalgebras of the Virasoro algebra and partition identities,” Adv. in Soviet Math., Volume in Honor of I. M. Gel'fand (1993).Google Scholar
- 8.B. L. Feigin and E. V. Frenkel, “Affine Kac-Moody algebras and semi-infinite flag manifolds,” Commun. Math. Phys.,128, 161–189 (1990).Google Scholar
- 9.V. G. Drinfeld, “A new realization of Yangian and of quantum affine algebras,” Dokl. Akad. Nauk SSSR,296, No. 1, 13–17 (1987).Google Scholar
- 10.B. L. Feigin and A. V. Stoyanovsky, Quasi-particle models for the representations of Lie algebras and the geometry of the flag manifold, Preprint, RIMS-942, Kyoto, September (1993).Google Scholar
- 11.A. Kuniba, T. Nakanishi, and J. Suzuki, Characters in conformal field theories from thermodynamic Bethe Ansatz, HUTP-92/A069 preprint, December (1992).Google Scholar
- 12.M. Terhoeven, Lift of Dilogarithm to Partition Identities, Preprint, Bonn (1992).Google Scholar
- 13.R. Kedem, T. R. Klassen, B. M. McCoy, and E. Melzer, Fermionic quasi-particle representations for characters ofG 1(1) ×G 1(1)/G 2(1), ITP preprint (1992).Google Scholar
- 14.S. Dasmahapatra, R. Kedem, T. R. Klassen, B. M. McCoy, and E. Melzer, Quasi-particles, conformal field theory, andq-series, Preprint ITP-SB-93-12, RU-93-07.Google Scholar
- 15.V. B. Mehta and A. Ramanathan, “Frobenius splitting and cohomology vanishing for a Schubert variety,” Ann. Math.,122, 27–40 (1985).Google Scholar
- 16.H. H. Andersen, “Schubert varieties and Demazure character formula,” Invent. Math.,79, 611–618 (1985).Google Scholar
- 17.G. Andrews, The Theory of Partitions, Addison-Wesley (1976).Google Scholar
- 18.A. Grothendieck et al., SGA 2, North-Holland, Amsterdam (1968).Google Scholar
- 19.S. Kumar, “Demazure character formula in arbitrary Kac—Moody setting,” Invent. Math.,89, 395–423 (1987).Google Scholar
- 20.V. Lakshmibai and C. S. Seshadri, “Thèorie monomiale standard pour\(\widehat{\mathfrak{s}\mathfrak{l}}_2 \),” C. R. Acad. Sci. Paris Ser. I,305, 183–185 (1987).Google Scholar
Copyright information
© Plenum Publishing Corporation 1994