Functional Analysis and Its Applications

, Volume 28, Issue 1, pp 55–72

Functional models for representations of current algebras and semi-infinite Schubert cells

  • A. V. Stoyanovsky
  • B. L. Feigin
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Schechtman and A. Varchenko, “Arrangements of hyperplanes and Lie algebra homology,” Invent. Math.,106, 139–194 (1991).Google Scholar
  2. 2.
    A. A. Beilinson and V. A. Ginzburg, “Infinitesimal structure of moduli spaces ofG-bundles,” Duke Math. J. (IMRN), No. 4, 63–74 (1992).Google Scholar
  3. 3.
    J. Lepowsky and M. Primc, “Structure of the standard modules for the affine Lie algebraA 1(1),” Contemporary Mathematics, Vol. 46, AMS, Providence (1985).Google Scholar
  4. 4.
    V. G. Kac, Infinite-Dimensional Lie Algebras, Cambridge University Press, Cambridge (1990).Google Scholar
  5. 5.
    A. Pressley and G. Segal, Loop Groups, Clarendon Press, Oxford (1988).Google Scholar
  6. 6.
    M. Kashiwara, “The flag manifold of Kac—Moody Lie algebra,” In: Algebraic Analysis, Geometry, and Number Theory, edited by J.-I. Igusa.Google Scholar
  7. 7.
    B. L. Feigin and E. V. Frenkel, “Coinvariants of nilpotent subalgebras of the Virasoro algebra and partition identities,” Adv. in Soviet Math., Volume in Honor of I. M. Gel'fand (1993).Google Scholar
  8. 8.
    B. L. Feigin and E. V. Frenkel, “Affine Kac-Moody algebras and semi-infinite flag manifolds,” Commun. Math. Phys.,128, 161–189 (1990).Google Scholar
  9. 9.
    V. G. Drinfeld, “A new realization of Yangian and of quantum affine algebras,” Dokl. Akad. Nauk SSSR,296, No. 1, 13–17 (1987).Google Scholar
  10. 10.
    B. L. Feigin and A. V. Stoyanovsky, Quasi-particle models for the representations of Lie algebras and the geometry of the flag manifold, Preprint, RIMS-942, Kyoto, September (1993).Google Scholar
  11. 11.
    A. Kuniba, T. Nakanishi, and J. Suzuki, Characters in conformal field theories from thermodynamic Bethe Ansatz, HUTP-92/A069 preprint, December (1992).Google Scholar
  12. 12.
    M. Terhoeven, Lift of Dilogarithm to Partition Identities, Preprint, Bonn (1992).Google Scholar
  13. 13.
    R. Kedem, T. R. Klassen, B. M. McCoy, and E. Melzer, Fermionic quasi-particle representations for characters ofG 1(1) ×G 1(1)/G 2(1), ITP preprint (1992).Google Scholar
  14. 14.
    S. Dasmahapatra, R. Kedem, T. R. Klassen, B. M. McCoy, and E. Melzer, Quasi-particles, conformal field theory, andq-series, Preprint ITP-SB-93-12, RU-93-07.Google Scholar
  15. 15.
    V. B. Mehta and A. Ramanathan, “Frobenius splitting and cohomology vanishing for a Schubert variety,” Ann. Math.,122, 27–40 (1985).Google Scholar
  16. 16.
    H. H. Andersen, “Schubert varieties and Demazure character formula,” Invent. Math.,79, 611–618 (1985).Google Scholar
  17. 17.
    G. Andrews, The Theory of Partitions, Addison-Wesley (1976).Google Scholar
  18. 18.
    A. Grothendieck et al., SGA 2, North-Holland, Amsterdam (1968).Google Scholar
  19. 19.
    S. Kumar, “Demazure character formula in arbitrary Kac—Moody setting,” Invent. Math.,89, 395–423 (1987).Google Scholar
  20. 20.
    V. Lakshmibai and C. S. Seshadri, “Thèorie monomiale standard pour\(\widehat{\mathfrak{s}\mathfrak{l}}_2 \),” C. R. Acad. Sci. Paris Ser. I,305, 183–185 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • A. V. Stoyanovsky
  • B. L. Feigin

There are no affiliations available

Personalised recommendations