Advertisement

Functional Analysis and Its Applications

, Volume 23, Issue 4, pp 277–286 | Cite as

Topology of spaces of functions without compound singularities

  • V. A. Vasil'ev
Article

Keywords

Functional Analysis Compound Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    M. Gromov, Partial Differential Relations, Springer, Berlin a.o. (1986).Google Scholar
  2. 2.
    J. Cerf, "La stratification naturelle des espaces de fonctions et le theoreme de la pseudoisotopie," Publ. Math. IHES,39, 6–173 (1971).Google Scholar
  3. 3.
    V. V. Sharko, "Minimal Morse functions," in: Geometry and Topology in Global Nonlinear Problems [in Russian], Voronezh (1984), pp. 123–144.Google Scholar
  4. 4.
    K. Igusa, "Higher singularities of smooth functions are unnecessary," Ann. Math.,119, 1–58 (1984).Google Scholar
  5. 5.
    J. Cerf, "Suppression des singularities de codimension plus grande que 1 dans les familles de fonctions differentiables reeles (d'apres K. Igusa)," Semin. Bourbaki-1983, No. 627 (1984).Google Scholar
  6. 6.
    V. I. Arnol'd, V. A. Vasil'ev, V. V. Goryunov, and O. V. Lyashko, Singularities [in Russian], VINITI, Moscow (1988).Google Scholar
  7. 7.
    V. I. Arnol'd, "Spaces of functions with moderate singularities," Funktsion. Anal. Prilozhen.,23, No. 3, 1–10 (1989).Google Scholar
  8. 8.
    K. Igusa, "On the homotopy type of the space of generalized Morse functions," Topology,23, No. 2, 245–256 (1984).Google Scholar
  9. 9.
    K. Igusa, "The space of framed functions," Trans. Am. Math. Soc.,301, No. 2 (1987).Google Scholar
  10. 10.
    M. Golubitsky and V. Guillemin, Stable Maps and Their Singularities [Russian translation], Mir, Moscow (1977).Google Scholar
  11. 11.
    D. B. Fuks, A. T. Fomenko, and V. L. Gutenmakher, Homotopic Topology [in Russian], Moscow State Univ. (1969).Google Scholar
  12. 12.
    E. Dyer and R. K. Lashof, "Homology of iterated loop spaces," Am. J. Math.,84, No. 1, 35–83 (1962).Google Scholar
  13. 13.
    V. A. Vasil'ev, "Stable cohomology of complements to discriminants," Itogi Nauki Tekhn. Seriya Sovremennye Problemy Matematiki [in Russian], Vol. 33, VINITI, Moscow (1988), pp. 3–29.Google Scholar
  14. 14.
    J. Milnor, The h-Cobordism Theorem [Russian translation], Mir, Moscow (1969).Google Scholar
  15. 15.
    V. A. Rokhlin and D. B. Fuks, Beginning Course in Topology [in Russian], Nauka, Moscow (1977).Google Scholar
  16. 16.
    S. Smale, "On the structure of manifolds," Matematika (Collection of Russian translations),8, No. 4, 95–108 (1964).Google Scholar
  17. 17.
    V. A. Vassilyev, Lagrange and Legendre Characteristic Classes, Gordon and Breach, New York (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • V. A. Vasil'ev

There are no affiliations available

Personalised recommendations