Advertisement

Biotechnology Letters

, Volume 8, Issue 12, pp 843–848 | Cite as

Production of corrinoids including vitamin B-12 byMethanosarcina barkeri growing on methanol

  • Tapan K. Mazumder
  • N. Nishio
  • M. Hayashi
  • S. Nagai
Article

Summary

A preliminary attempt was made for producing vitamin B-12 byMethanosarcina barkeri strain Fusaro in a fed-batch culture with a methanol minimum medium. After 11 days, total methanol consumption, cell density and corrinoid concentration were 145 g/l, 8.5 g(dry cell weight)/l, and 135 mg/l (73% in supernatant) respectively. Electrophoretic separation revealed that 33% of the total corrinoids was B-12 Factor III (5-hydroxybenzimidazolylcobamide) and the remaining corrinoids were cobinamide (Factor B) and its derivatives.

Keywords

Methanol Cell Density Minimum Medium Cell Weight Electrophoretic Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Bernhauer, K., Müller, O., and Wagner, F. (1963).Angew. Chem. 75: 1145.Google Scholar
  2. Dellweg, H., Becher, E., and Bernhauer, K. (1956).Biochem. Z. 327: 422.Google Scholar
  3. Ebina, S., Terao, S., Nagai, J, and Nagai, I. (1986).Proceedings of the Annual Meeting of the Society of Agric. Biol. Chem., Kyoto, Japan, pp 506.Google Scholar
  4. Fenton, W.A., and Rosenberg, L.E. (1978).Anal. Biochem. 90: 119.Google Scholar
  5. Florent, J., and Ninet, L. (1979). In: H.J. Peppler and D. Perlman (eds.),Microbial Technology, Vol 1. 2nd edn., Academic Press, New York, pp 497.Google Scholar
  6. Giannotti, C. (1982). In: D. Dolphin (ed.),B-12, vol 1. John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore, pp 393.Google Scholar
  7. Kamikubo, T. (1956).Vitamin 11: 43.Google Scholar
  8. Kamikubo, T., and Narahara, H. (1968).Vitamin 38: 331.Google Scholar
  9. Krzycki, J., and Zeikus, J.G. (1980).Curr. Microbiol. 3: 243.Google Scholar
  10. Mazumder, T.K., Nishio, N., Fukuzaki, S., and Nagai, S. (1986).Appl. Environ. Microbiol. 52: (in press).Google Scholar
  11. Namba, A., Nukada, R., and Nagai, S. (1983).J. Ferment. Technol. 61: 551.Google Scholar
  12. Nishio, N., Yano, T., and Kamikubo, T. (1975).Agric. Biol. Chem. 37:207.Google Scholar
  13. Nishio, N., Ueda, M., Omae, Y., Hayashi, M., and Kamikubo, T. (1976).Agric. Biol. Chem. 40: 2037.Google Scholar
  14. Nishio, N., Mazumder, T.K., and Nagai, S. (1984).J. Ferment. Technol. 62: 487.Google Scholar
  15. Pol, A., Drift, van der C., and Vogels G.D. (1982).Biochem. Biophys. Res. Commun. 108: 731.Google Scholar
  16. Shapiro, S. (1982).Can. J. Microbiol. 28: 629.Google Scholar
  17. Shimizu, T., Narahara, H., and Kamikubo, T. (1956).Anal. Biochem. 28: 85.Google Scholar
  18. Wolin, E.A., Wolin, M.J., and Wolfe, R.S. (1963).J. Biol. Chem. 283: 2882.Google Scholar
  19. Zehnder, A.J.B., and Wuhrmann, K. (1976).Science 190: 1165.Google Scholar
  20. Zeikus, J.G. (1980).Ann. Rev. Microbiol. 34:423.Google Scholar
  21. Zeikus, J.G. (1983).Advances in Microbial Physiology 24: 215.Google Scholar

Copyright information

© Science and Technology Letters 1986

Authors and Affiliations

  • Tapan K. Mazumder
    • 1
  • N. Nishio
    • 1
  • M. Hayashi
    • 1
  • S. Nagai
    • 1
  1. 1.Department of Fermentation Technology, Faculty of EngineeringHiroshima UniversityHigashi-Hiroshima 724Japan

Personalised recommendations