Functional Analysis and Its Applications

, Volume 8, Issue 2, pp 138–141

Not every Banach space contains an imbedding oflp or c0

  • B. S. Tsirel'son


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    J. Lindenstrauss, "The geometric theory of the classical Banach spaces," Actes du Congrés Intern. Math., 1970, Paris, Vol. 2 (1971), pp. 365–372.Google Scholar
  2. 2.
    N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience, New York (1958).Google Scholar
  3. 3.
    R. C. James, "Bases and reflexivity of Banach spaces," Ann. Math.,52, No. 3 (1950).Google Scholar
  4. 4.
    M. G. Krein, D. P. Mil'man, and M. A. Rutman, "On a property of a basis in a Banach space," Zapiski Khar'k. Matem. Ob-va,16, 106–110 (1940).Google Scholar

Copyright information

© Consultants Bureau 1974

Authors and Affiliations

  • B. S. Tsirel'son

There are no affiliations available

Personalised recommendations