Advertisement

Functional Analysis and Its Applications

, Volume 20, Issue 3, pp 203–214 | Cite as

Spectral theory of finite-zone nonstationary Schrödinger operators. A nonstationary Peierls model

  • I. M. Krichever
Article

Keywords

Functional Analysis Spectral Theory Peierls Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    I. M. Krichever, "Algebraic-geometrical construction of the Zakharov—Shabat equations and their periodic solutions," Dokl. Akad. Nauk SSSR,227, No. 2, 291–294 (1976).Google Scholar
  2. 2.
    I. M. Krichever, "Integration of nonlinear equations by the algebraic geometry methods," Funkts. Anal. Prilozhen.,11, No. 1, 15–31 (1977).Google Scholar
  3. 3.
    B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, "Nonlinear equations of the Korteweg—de Vries type, finite-zone linear operators and Abelian manifolds," Usp. Mat. Nauk,31, No. 1, 55–136 (1976).Google Scholar
  4. 4.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: the Inverse Problem Method [in Russian], Nauka, Moscow (1980).Google Scholar
  5. 5.
    I. M. Krichever, "Methods of algebraic geometry in the theory of nonlinear equations," Usp. Mat. Nauk,32, No. 6, 183–208 (1980).Google Scholar
  6. 6.
    I. M. Krichever and S. P. Novikov, "Holomorphic bundles over algebraic curves and nonlinear equations," Usp. Mat. Nauk,35, No. 6, 47–68 (1980).Google Scholar
  7. 7.
    B. A. Dubrovin, "Theta-functions and nonlinear equations," Usp. Mat. Nauk,36, No. 2, 11–80 (1981).Google Scholar
  8. 8.
    B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, "Topological and algebraic geometry methods in contemporary mathematical physics. II," Soviet Scientific Reviews. Math. Phys. Reviews: OPA, Amsterdam, 1982, Vol. 3, pp. 1–151.Google Scholar
  9. 9.
    S. P. Novikov, "Two-dimensional Schrödinger operators in periodic fields," Contemporary Problems in Mathematics [in Russian], Vol. 23, Itogi Nauki i Tekhniki, VINITI Akad. Nauk SSSR, Moscow (1983), pp. 3–32.Google Scholar
  10. 10.
    B. A. Dubrovin, "Matrix finite-zone operators," Contemporary Problems in Mathematics [in Russian], Vol. 23, Itogi Nauki i Tekhniki, VINITI Akad. Nauk SSSR, Moscow (1983), pp. 33–78.Google Scholar
  11. 11.
    I. M. Krichever, "Nonlinear equations and elliptic curves," Contemporary Problems in Mathematics [in Russian], Vol. 23, Itogi Nauki i Tekhniki, VINITI Akad. Nauk SSSR, Moscow (1983), pp. 79–136.Google Scholar
  12. 12.
    S. A. Brazovskii, S. A. Gordyunin, and N. N. Kirova, "The exact solution of the Peierls model with an arbitrary number of electrons in a cell," Pis'ma Zh. Eksp. Teor. Fiz.,31, No. 8, 486–490 (1980).Google Scholar
  13. 13.
    E. D. Belokolos, "The Peierls—Frolich problems and finite-zone potentials. I," Teor. Mat. Fiz.,45, No. 2, 268–280 (1980).Google Scholar
  14. 14.
    E. D. Belokolos, "The Peierls—Frolich problems and finite-zone potentials. II," ibid.,48, No. 1, 60–69 (1981).Google Scholar
  15. 15.
    S. A. Brazovskii, I. E. Dzyaloshinskii, and I. M. Krichever, "Exactly solvable discrete Peierls models," Zh. Eksp. Teor. Fiz.,83, No. 1, 389–415 (1982).Google Scholar
  16. 16.
    I. E. Dzyaloshinskii and I. M. Krichever, "The sound and the wave of charge density in the discrete Peierls model," Zh. Eksp. Teor. Fiz.,85, No. 11, 1771–1789 (1983).Google Scholar
  17. 17.
    I. M. Krichever, "The Peierls model," Funkts. Anal. Prilozhen.,16, No. 4, 10–26 (1982).Google Scholar
  18. 18.
    I. E. Dzyaloshinskii and I. M. Krichever, "The effects of co-measurability in the discrete Peierls model," Zh. Eksp. Teor. Fiz.,83, No. 5, 1576–1581 (1982).Google Scholar
  19. 19.
    I. V. Cherednik, "Reality conditions in the ‘finite-zone’ integration," Dokl. Akad. Nauk SSSR,252, No. 5, 1104–1108 (1980).Google Scholar
  20. 20.
    V. E. Zakharov and A. B. Shabat, "The integration scheme for nonlinear equations of mathematical physics with the method of the inverse problem of the scattering theory. I," Funkts. Anal. Prilozhen.,8, No. 3, 43–53 (1974).Google Scholar
  21. 21.
    I. M. Krichever, "Rational solutions of the Kadomtsev—Petviashvili equation and integrable systems of particles on the direct line," Funkts. Anal. Prilozhen.,12, No. 1, 76–78 (1978).Google Scholar
  22. 22.
    L. A. Bordag, A. R. Its, V. B. Matveev, S. V. Manakov, and V. E. Zakharov, "Two-dimensional solitons of Kadomtsev—Petviashvili equation," Phys. Lett., 205–207 (1977).Google Scholar
  23. 23.
    I. M. Krichever, "The Laplace method, algebraic curves and nonlinear equations," Funkts. Anal. Prilozhen.,18, No. 3, 43–56 (1984).Google Scholar
  24. 24.
    J. Fay, "Theta-function on Riemann surfaces," Lect. Notes in Math.,352 (Springer-Verlag), Berlin (1973).Google Scholar
  25. 25.
    V. B. Matveev, "Darboux transformations and the solutions of KP equation depending on the functional parameters," Lett. Math. Phys.,3, 213–225 (1979).Google Scholar
  26. 26.
    E. A. Kuznetsov and A. B. Mikhailov, "Stability of stationary waves in nonlinear media with weak dispersion," Zh. Eksp. Teor. Fiz.,67, No. 11, 1019–1027 (1974).Google Scholar
  27. 27.
    B. A. Dubrovin, "The periodic problem for the Korteweg—de Vries equation," Funkts. Anal. Prilozhen.,9, No. 3, 41–51 (1975).Google Scholar
  28. 28.
    B. A. Dubrovin, "The inverse problem of scattering for periodic finite-zone potentials," Funkts. Anal. Prilozhen.,9, No. 1, 65–66 (1975).Google Scholar
  29. 29.
    I. V. Cherednik, "Differential equations for the Beiker—Akhiezer functions," Funkts. Anal. Prilozhen.,12, No. 3, 45–54 (1978).Google Scholar
  30. 30.
    N. Yajima and M. Oikawa, "Interactions between Langmure's and sonic waves," Prog. Theor. Phys.,56, 17–19 (1976).Google Scholar
  31. 31.
    V. G. Makhankov, "On the stationary solutions of Schrödinger equation with self-congruent potential satisfying Bussinesqu equation," Phys. Lett.,50, A–P, 42–44 (1974).Google Scholar
  32. 32.
    Y. Bogomolov, I. Kol'chugina, A. Litvak, and A. Sergeev, "Near-sonic Langmur solitons," Phys. Lett.,91, A–P, 9–14 (1982).Google Scholar
  33. 33.
    V. K. Mel'nikov, "Some new nonlinear evolution equations integrable by the inverse probblem method," Mat. Sb.,121, No. 4, 469–498 (1983).Google Scholar
  34. 34.
    H. Bateman and A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, New York (1955).Google Scholar
  35. 35.
    E. Date, M. Jimbo, Kashivara, and T. Miva, "Transformation groups for soliton equations. I," Proc. Jpn. Acad.,57A, 342–347 (1981), and III, J. Jpn.,50, 3806–3812 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • I. M. Krichever

There are no affiliations available

Personalised recommendations