Functional Analysis and Its Applications

, Volume 28, Issue 3, pp 178–186 | Cite as

Classification of pairs of Arf functions on orientable and nonorientable surfaces

  • S. M. Natanzon


Functional Analysis Nonorientable Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry [in Russian], Nauka, Moscow (1985).Google Scholar
  2. 2.
    Yu. I. Manin, “Superalgebraic curves and quantum strings,” Trudy Mat. Inst. Steklov.,183, 126–138 (1990).Google Scholar
  3. 3.
    J. Milnor and D. Husemoller, Symmetric Bilinear Forms, Springer-Verlag, New York (1973).Google Scholar
  4. 4.
    S. M. Natanzon, “Moduli of real algebraic curves,” Tr. Mosk. Mat. Obshch.,37, 219–253 (1978).Google Scholar
  5. 5.
    S. M. Natanzon, “Moduli spaces of super-Riemann supersurfaces,” Mat. Zametki,45, No. 4, 111–116 (1989).Google Scholar
  6. 6.
    S. M. Natanzon, “Klein supersurfaces,” Mat. Zametki,48, No. 2, 72–82 (1990).Google Scholar
  7. 7.
    S. M. Natanzon, “Klein surfaces,” Usp. Mat. Nauk,45, No. 6, 47–90 (1990).Google Scholar
  8. 8.
    S. M. Natanzon, “Topological classification of pairs of spinor forms on surfaces,” Usp. Mat. Nauk,47, No. 1, 215–216 (1992).Google Scholar
  9. 9.
    V. A. Rokhlin, “New results in the theory of four-dimensional manifolds,” Dokl. Akad. Nauk SSSR,84, 221–224 (1952).Google Scholar
  10. 10.
    C. Arf, “Untersuchungen uber quadratische Formen in Korpern der Charakteristik 2,” J. Reine Angew. Math.,183, 148–167 (1941).Google Scholar
  11. 11.
    M. Atiyah, “Riemann surfaces and spin structures,” Ann. Sci. École Norm. Sup. (4) Ser. 1,4 (1971).Google Scholar
  12. 12.
    S. V. Chmutov, “Monodromy groups of critical point of functions,” Invent. Math.,73, 491–510 (1983).Google Scholar
  13. 13.
    M. Dehn, “Die Gruppe der Abbildungsklassen,” Acta Math.,69 (1938).Google Scholar
  14. 14.
    A. Krazer, Lehrbuch der Thetafunktionen, Lpz. (1903).Google Scholar
  15. 15.
    M. I. Monastyrsky and S. M. Natanzon, “The moduli space of superconformal instantons in sigma models,” Mod. Phys. Lett. A,6, No. 19, 1787–1796 (1991).Google Scholar
  16. 16.
    D. Mumford, “Theta characteristics of an algebraic curve,” Ann. Sci. École Norm. Sup. (4) Ser. 2,4, 181–192 (1971).Google Scholar
  17. 17.
    S. M. Natanzon, “Moduli spaces in RiemannN = 1 andN = 2 supersurfaces,” J. Geom. Phys.,12, 35–54 (1993).Google Scholar
  18. 18.
    R. Robertello, “An invariant of knot cobordism,” Comm. Pure Appl. Math.,18, 543–555 (1965).Google Scholar
  19. 19.
    W. Scherrer, “Zur Theorie der endlichen Gruppen topologischer Abbindungen von geschlossenen Flachen in sich,” Comment. Math. Helv.,1, 69–119 (1929).Google Scholar
  20. 20.
    J. P. Serre, “Revetements à ramification impaire et thêta-caracteristiques,” C. R. Acad. Sci. Paris Ser. I,311, 547–552 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • S. M. Natanzon

There are no affiliations available

Personalised recommendations