Advertisement

Functional Analysis and Its Applications

, Volume 21, Issue 2, pp 126–142 | Cite as

Algebras of virasoro type, riemann surfaces and structures of the theory of solitons

  • I. M. Krichever
  • S. P. Novikov
Article

Keywords

Functional Analysis Riemann Surface Virasoro Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. Mandelstam, "Dual resonance models," Phys. Rep.,13, 259–353 (1974).Google Scholar
  2. 2.
    A. Belavin, A. Zamolodchkov, and A. Polyakov, "An infinite conformal group in quantum field theory," Preprint, Inst. Theor. Phys., Moscow (1983).Google Scholar
  3. 3.
    D. Friedan, in: Recent Advances in Field Theory and Statistical Mechanics, North-Holland, Les Houches (1984).Google Scholar
  4. 4.
    A. A. Belavin and V. Knizhnik, "Complex geometry and the theory of quantum strings," Zh. Éksp. Teor. Fiz.,91, No. 2(8), 364–391 (1986).Google Scholar
  5. 5.
    J. N. Shwartz, "Superstring theory," Phys. Reports,89, 223–322 (1982).Google Scholar
  6. 6.
    B. L. Feigin and D. B. Fuks, "Skew-symmetric invariant differential operators on the line and Verma modules over the Virasoro algebra," Funkts. Anal. Prilozhen.,16, No. 2, 47–63 (1982).Google Scholar
  7. 7.
    D. Mumford, "On the stability of the algebraic variaters," Math. E'ns L'Ens,23, 39–55 (1977).Google Scholar
  8. 8.
    I. M. Krichever, "Algebraic curves and nonlinear difference equations," Usp. Mat. Nauk,33, No. 4, 215–216 (1978).Google Scholar
  9. 9.
    I. M. Krichever, "Spectral theory of ‘finite-zone’ nonstationary Schrödinger operators. Nonstationary Peierls model," Funkts. Anal. Prilozhen.,20, No. 2, 42–54 (1986).Google Scholar
  10. 10.
    I. V. Cherednik, "Differential equations for Baker—Akhiezer functions," Funkts. Anal. Prilozhen.,12, No. 3, 45–54 (1978).Google Scholar
  11. 11.
    B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, "Nonlinear equations of Korteweg—de Vries type, finite-zone linear operators and Abelian varieties," Usp. Mat. Nauk,31, No. 1, 55–136 (1976).Google Scholar
  12. 12.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: Method of the Inverse Problem [in Russian], Nauka, Moscow (1980).Google Scholar
  13. 13.
    I. M. Krichever, "Methods of algebraic geometry in the theory of nonlinear equations," Usp. Mat. Nauk,32, No. 6, 183–208 (1977).Google Scholar
  14. 14.
    B. A. Dubrovin, "Theta-functions and nonlinear equations," Usp. Mat. Nauk,36, No. 2, 11–80 (1981).Google Scholar
  15. 15.
    I. M. Krichever and S. P. Novikov, "Holomorphic bundles over algebraic curves and nonlinear equations," Usp. Mat. Nauk,35, No. 6, 47–68 (1980).Google Scholar
  16. 16.
    B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, "Integrable systems. I," in: Contemporary Problems of Mathematics: Fundamental Directions [in Russian], Itogi Nauki i Tekhniki, VINITI AN SSSR, Moscow, Vol. 4 (1985), pp. 210–315.Google Scholar
  17. 17.
    I. M. Krichever, "Laplace's method, algebraic curves, and nonlinear equations," Funkts. Anal. Prilozhen.,18, No. 3, 43–56 (1984).Google Scholar
  18. 18.
    H. Bateman and A. Erdelyi, Higher Transcendental Functions [Russian translation], Nauka, Moscow (1974).Google Scholar
  19. 19.
    B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, "Schrödinger's equation in a periodic field and Riemann surfaces," Dokl. Akad. Nauk SSSR,229, No. 1, 15–18 (1976).Google Scholar
  20. 20.
    I. M. Krichever, "Algebrogeometric construction of Zakharov—Shabat equations and their periodic solutions," Dokl. Akad. Nauk SSSR,227, No. 2, 291–294 (1976).Google Scholar
  21. 21.
    A. Yu. Orlov and E. I. Shul'man, "Supplementary symmetries of integrable systems and representations of conformal algebra," Inst. Avtomatiki i Élektrometrii Sib. Otd. Akad. Nauk SSSR, Novosibirsk, Preprint No. 217 (1984).Google Scholar
  22. 22.
    A. Yu. Orlov and E. I. Shul'man, "Supplementary symmetries of two-dimensional integrable systems," Inst. Avtom. i Élektrometrii Sib. Otd. AN SSSR, Novosibirsk, Preprint No. 277 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • I. M. Krichever
  • S. P. Novikov

There are no affiliations available

Personalised recommendations