Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The maximum-entropy measure of a rational endomorphism of the Riemann sphere

  • 47 Accesses

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    K. Deleeuw and I. Glicksberg, "Applications of almost-periodic compactifications," Acta Math.,105, 63–97 (1961).

  2. 2.

    P. Montel, "Leçons sur les Familles Normales de Fonctions Analytiques et leurs Applications (Lectures on Normal Families of Analytic Functions and their Applications)," Gauthier-Villars, Paris (1927).

  3. 3.

    H. Brolin, Arkiv Math.,6, No. 2, 103–144 (1965).

  4. 4.

    M. Gromov, "Entropy of holomorphic maps," Preprint, University of California (1980).

  5. 5.

    M. Yu. Lyubich, Funkts. Anal.,15, No. 4, 83–84 (1981).

  6. 6.

    M. Misiurewicz, Bull. Acad. Pol. Sci.,21, 903–910 (1973).

  7. 7.

    R. Bowen, Trans. Am. Math. Soc.,164, 323–331 (1972).

  8. 8.

    R. Bowen, Trans. Am. Math. Soc.,184, 125–136 (1973).

Download references

Additional information

Tashkent State University. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 16, No. 4, pp. 78–79, October–December, 1982.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lyubich, M.Y. The maximum-entropy measure of a rational endomorphism of the Riemann sphere. Funct Anal Its Appl 16, 309–311 (1982). https://doi.org/10.1007/BF01077862

Download citation

Keywords

  • Functional Analysis
  • Riemann Sphere
  • Rational Endomorphism