Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Self-adjoint infinite-dimensional elliptic differential operators with a singular potential

  • 36 Accesses

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    Yu. L. Daletskii, Dokl. Akad. Nauk SSSR,227, No. 4, 784–787 (1976).

  2. 2.

    N. N. Frolov, Mat. Zametki,24, No. 2, 241–248 (1978).

  3. 3.

    N. N. Frolov, Funkts. Anal.,14, No. 1, 85–86 (1980).

  4. 4.

    N. N. Frolov, Sib. Mat. Zh.,22, No. 1, 198–204 (1981).

  5. 5.

    B. Simon and R. Hoegh—Krohn, J. Funct. Anal.,9, No. 2, 121–180 (1972).

  6. 6.

    Yu. G. Kondrat'ev, Funkts. Anal.,16, No. 4, 76–77 (1982).

  7. 7.

    Yu. M. Berezanskii, Ukr. Mat. Zh.,27, No. 6, 729–742 (1975).

  8. 8.

    Yu. M. Berezanskii, Self-Adjoint Operators in Spaces of Functions of Infinitely Many Variables [in Russian], Naukova Dumka, Kiev (1978).

  9. 9.

    Yu. M. Berezanskii and V. G. Samoilenko, Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 9, 691–695 (1979).

  10. 10.

    Yu. M. Berezanskii and V. G. Samoilenko, Usp. Mat. Nauk,36, No. 5, 3–56 (1981).

  11. 11.

    V. G. Samoilenko, Ukr. Mat. Zh.,34, No. 5, 647–650 (1982).

Download references

Additional information

Institute of Mathematics, Academy of Sciences of the Ukrainian SSR. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 16, No. 4, pp. 55–56, October–December, 1982.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Berezanskii, Y.M. Self-adjoint infinite-dimensional elliptic differential operators with a singular potential. Funct Anal Its Appl 16, 286–287 (1982). https://doi.org/10.1007/BF01077851

Download citation

Keywords

  • Functional Analysis
  • Differential Operator
  • Singular Potential
  • Elliptic Differential Operator