Advertisement

Functional Analysis and Its Applications

, Volume 16, Issue 4, pp 248–263 | Cite as

The peierls model

  • I. M. Krichever
Article

Keywords

Functional Analysis Peierls Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    B. A. Dubrovin, V. P. Matveev, and S. P. Novikov, "Nonlinear equations of Korteweg—de Vries type, finite-zone operators, and Abelian varieties," Usp. Mat. Nauk,31, No. 1, 55–136 (1976); Russian Math. Surveys,31, No. 1, 59–146 (1976).Google Scholar
  2. 2.
    I. M. Krichever, "Methods of algebraic geometry in the theory of nonlinear equations," Usp. Mat. Nauk,32, No. 6, 183–208 (1977); Russian Math. Surveys,32, No. 6, 185–213 (1977).Google Scholar
  3. 3.
    I. M. Krichever and S. P. Novikov, "Holomorphic bundles over algebraic curves and nonlinear equations," Usp. Mat. Mauk,35, No. 6, 47–68 (1980); Russian Math. Surveys,35, No. 6, 53–79 (1980).Google Scholar
  4. 4.
    B. Á. Dubrovin, "Theta functions and nonlinear equations," Usp. Mat. Nauk,36, No. 2, 11–80 (1981); Russian Math. Surveys,36, No. 2, 11–92 (1981).Google Scholar
  5. 5.
    S. P. Novikov, "A periodic problem for the Korteweg—de Vries equation, I," Funkts. Anal. Prilozhen.,8, No. 3, 54–66 (1974).Google Scholar
  6. 6.
    S. A. Brazovskii, S. A. Gordyunin, and N. N. Kirova, "Exact solution of the Peierls model with an arbitrary number of electrons in per elementary box," Pis'ma Zh. Eksp. Tekh. Fiz.,31, No. 8, 486–490 (1980).Google Scholar
  7. 7.
    S. A. Brazovskii, I. E. Dsyaloshinskii, and N. N. Kirova, "Spin states in the Peierls model and finite-zone potentials," Zh. Eksp. Tekh. Fiz.,81, No. 6, 2279–2298 (1981).Google Scholar
  8. 8.
    E. D. Belokolos, "The Peierls—Fröchlich problem and finite-zone potentials. I," Teor. Mat. Fiz.,45, No. 2, 268–280 (1980).Google Scholar
  9. 9.
    E. D. Belokolos, "The Peierls—Fröchlich problem and finite-zone potentials. I," Teor. Mat. Fiz.,48, No. 1, 60–69 (1981).Google Scholar
  10. 10.
    S. A. Brazovskii and I. E. Dzyaloshinskii, "Dynamics of a one—dimensional electron—phonon system at low temperature," Zh. Eksp. Tekh. Fiz.,71, No. 6, 2338–2348 (1976).Google Scholar
  11. 11.
    R. E. Peierls, Quantum Theory of Solids, Clarendon Press, Oxford (1955).Google Scholar
  12. 12.
    S. A. Brazovskii, I. M. Krichever, and I. E. Dzyaloshinskii, "Exactly solvable discrete Peierls models," Zh. Eksp. Tekh. Fiz.,82, No. 8 (1982).Google Scholar
  13. 13.
    I. E. Dzyaloshinskii, "Theory of helycoidal structures," Zh. Eksp. Tekh. Fiz.,47, No. 5, 992–1008 (1964).Google Scholar
  14. 14.
    I. Dzyaloshinskii, "On Fröchlich's model of one—dimensional superconductivity," in: Collective Properties of Physical Systems, B. Landkvist (ed.), Academic Press, New York—London (1973), pp. 143–165.Google Scholar
  15. 15.
    S. Aubry, "Metal—insulator transition in one—dimensional deformable lattices," in: Bifurcation Phenomena in Math. Phys. and Related Topics, C. Bardos and D. Bessis (ed.), D. Reidel, Dordrecht—Boston—London (1980), pp. 163–184.Google Scholar
  16. 16.
    I. M. Krichever, "Algebraic curves and nonlinear difference equations," Usp. Mat. Nauk,33, No. 4, 215–216 (1978); Russian Math. Surveys,33, No. 4, 255–256 (1978).Google Scholar
  17. 17.
    A. R. Its and V. B. Matveev, "On a class of solutions to the Korteweg—de Vries equation," Problems of Math. Phys., No. 8, Leningrad State Univ. (1976).Google Scholar
  18. 18.
    I. M. Krichever, "Integration of nonlinear equations by methods of algebraic geometry," Funkts. Anal. Prilozhen.,11, No. 1, 20–31 (1977); Functional Anal. Appl.,11, No. 1, 12–26 (1977).Google Scholar
  19. 19.
    H. Bateman and A. Erdélyi, Higher Transcendental Functions. Elliptic and Automorphic Functions. Lamé and Mathieu Functions, McGraw-Hill (1955).Google Scholar
  20. 20.
    E. I. Dinaburg and Ya. G. Sinai, "Schrödinger equations with quasiperiodic potentials," Fund. Anal.,9, 279–283 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • I. M. Krichever

There are no affiliations available

Personalised recommendations