Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Newton polyhedra and the Bezout formula for matrix-valued functions of finite-dimensional representations

  • 76 Accesses

  • 2 Citations

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    J. F. Adams, Lectures on Lie Groups, W. A. Benjamin, New York (1969).

  2. 2.

    D. N. Bernshtein, Funkts Anal. Prilozhen.,9, No. 3, 1–4 (1975).

  3. 3.

    T. A. Springer, Invariant Theory, Lect. Notes in Math., Vol. 585, Springer-Verlag, Berlin—New York (1977).

  4. 4.

    A. A. Kirillov, Funkts. Anal. Prilozhen.,2, No. 1, 40–55 (1968).

  5. 5.

    I. G. Macdonald, Invent. Math.,56, 93–95 (1980).

  6. 6.

    B. Ya. Kazarnovskii, Funkts. Anal. Prilozhen.,18, No. 4, 40–49 (1984).

  7. 7.

    M. F. Atiyah, Bull. London Math. Soc.,14, No. 1, 1–15 (1982).

  8. 8.

    V. I. Arnol'd, Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1974).

Download references

Additional information

Moscow Scientific-Research Institute for Model and Experimental Planning. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 21, No. 4, pp. 73–74, October–December, 1987.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kazarnovskii, B.Y. Newton polyhedra and the Bezout formula for matrix-valued functions of finite-dimensional representations. Funct Anal Its Appl 21, 319–321 (1987). https://doi.org/10.1007/BF01077809

Download citation

Keywords

  • Functional Analysis
  • Newton Polyhedron