Functional Analysis and Its Applications

, Volume 22, Issue 2, pp 83–93 | Cite as

Integrable discrete-time systems and difference operators

  • A. P. Veselov
Article

Keywords

Functional Analysis Difference Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    P. I. Belobrov, V. V. Beloshapkin, G. M. Zaslavskii, and A. G. Tret'yakov, "Order and chaos in classical models of spin chains," Zh. Éksp. Teor. Fiz.,87, No. 1, 310–322 (1984).Google Scholar
  2. 2.
    Ya. I. Granovskii and A. S. Zhedanov, "Periodic structures on a quantal spin chain," Zh. Éksp. Teor. Fiz.,89, No. 6, 2156–2163 (1985).Google Scholar
  3. 3.
    Ya. I. Granovskii and A. S. Zhedanov, "Solutions of domain type in magnetic chains," Teor. Mat. Fiz.,71, No. 1, 145–153 (1987).Google Scholar
  4. 4.
    S. Aubry and Le Daeron, "The discrete Frenkel—Kontorova model and its extension. 1. Exact result for the ground states," Physica,8D, 381–422 (1983).Google Scholar
  5. 5.
    V. L. Pokrovskii and S. B. Khokhlachev, "Nonuniform steady states in the Heisenberg model," Pis'ma Zh. Éksp. Teor. Fiz.,22, No. 7, 371–373 (1975).Google Scholar
  6. 6.
    J. Moser, "Some aspects of integrable Hamiltonian systems," Usp. Mat. Nauk,36, No. 5, 109–151 (1981).Google Scholar
  7. 7.
    B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, "Nonlinear equations of the Korteweg—de Vries type, finite-zoned linear operators and Abelian varieties," Usp. Mat. Nauk,31, No. 1, 55–136 (1976).Google Scholar
  8. 8.
    B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, "Integrable systems. I," in: Sovremennye Problemy Matematiki. Fundamental'nye Napravleniya. Itogi Nauki i Tekhniki,4, VINITI, Moscow (1985), pp. 179–285.Google Scholar
  9. 9.
    V. I. Arnol'd, Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1974).Google Scholar
  10. 10.
    O. I. Bogoyavlenskii and S. P. Novikov, "On the relationship of Hamiltonian formalisms of steady and nonsteady problems," Funkts. Anal. Prilozhen.,10, No. 2, 9–12 (1976).Google Scholar
  11. 11.
    I. M. Gel'fand and L. A. Dikii, "Fractional powers of operators and Hamiltonian systems," Funkts. Anal. Prilozhen.,10, No. 4, 13–29 (1976).Google Scholar
  12. 12.
    O. I. Mokhov, "Hamiltonian property of an evolution flow on the set of stationary points of its integral," Usp. Mat. Nauk,39, No. 4, 173–174 (1984).Google Scholar
  13. 13.
    A. P. Veselov, "The Landau—Lifshits equation and integrable systems of classical mechanics," Dokl. Akad. Nauk SSSR,270, No. 5, 1094–1097 (1983).Google Scholar
  14. 14.
    S. P. Novikov, "Hamiltonian formalism and a many-valued analog of Morse theory," Usp. Mat. Nauk,37, No. 5, 3–49 (1982).Google Scholar
  15. 15.
    A. P. Veselov, "Geometry of Hamiltonian systems related to nonlinear partial differential equations," Author's Abstract of Candidate's Dissertation, Moscow State University (1981).Google Scholar
  16. 16.
    M. Berger, Geometry [Russian translation], Mir, Moscow (1984).Google Scholar
  17. 17.
    P. Griffiths and J. Harris, "On Cayley's explicit solution to Poncelet porism," Enseign. Math., Ser. 2,24, Nos. 1–2, 31–40 (1978).Google Scholar
  18. 18.
    P. Griffiths, "Variations on a theme of Abel," Invent. Math.,35, 321–390 (1976).Google Scholar
  19. 19.
    A. S. Mishchenko, "Integrals of geodesic flows on Lie groups," Funkts. Anal. Prilozhen.,4, No. 3, 73–78 (1970).Google Scholar
  20. 20.
    L. A. Dikii, "A remark on Hamiltonian systems related to a rotation group," Funkts. Anal. Prilozhen.,6, No. 4, 83–84 (1972).Google Scholar
  21. 21.
    S. V. Manakov, "A remark on integration of the Euler equations for the dynamics of an n-dimensional rigid body," Funkts. Anal. Prilozhen.,10, No. 4, 93–94 (1976).Google Scholar
  22. 22.
    S. A. Brazovskii, I. E. Dzyaloshinskii, and I. M. Krichever, "Exactly solvable discrete Peierls models," Zh. Éksp. Teor. Fiz.,83, No. 1, 389–415 (1982).Google Scholar
  23. 23.
    A. P. Veselov and S. P. Novikov, "Finite-zoned two-dimensional irrotational Schrödinger operators. Explicit formulas and evolution equations," Dokl. Akad. Nauk SSSR,279, No. 1, 20–24 (1984).Google Scholar
  24. 24.
    A. P. Veselov, "Finite-zoned potentials and integrable systems on a sphere with quadratic potential," Funkts. Anal. Prilozhen.,14, No. 1, 48–50 (1980).Google Scholar
  25. 25.
    A. P. Veselov, "Integration of the steady-state problem for the classical spin chain," Teor. Mat. Fiz.,71, No. 1, 154–159 (1987).Google Scholar
  26. 26.
    H. Knörrer, "Geodesics on quadrics and a mechanical problem of C. Neumann," J. Reine Angew. Math.,334, 69–78 (1982).Google Scholar
  27. 27.
    L. A. Takhtadzhyan and L. D. Faddeev, The Hamiltonian Approach in Soliton Theory [in Russian], Nauka, Moscow (1986).Google Scholar
  28. 28.
    M. Ablovitz and J. Ladic, "A nonlinear difference scheme and inverse scattering," Studies Appl. Math.,55, No. 3, 213 (1976).Google Scholar
  29. 29.
    R. Hirota, "Nonlinear partial difference equations. I–IV," J. Phys. Soc. Jpn.,43, 1424–1433, 2074–2086 (1977);45, 321–332 (1978).Google Scholar
  30. 30.
    A. P. Veselov, "Integrable maps and Lie algebras," Dokl. Akad. Nauk SSSR,292, No. 6, 1289–1291 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • A. P. Veselov

There are no affiliations available

Personalised recommendations