Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Pontryagin duality in the theory of topological modules

  • 56 Accesses

  • 1 Citations

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S. S. Akbarov, Mat. Zametki,57, No. 3, 463–466 (1995).

  2. 2.

    S. Maclane, Homology, Springer-Verlag, Berlin—Göttingen—Heidelberg (1963).

  3. 3.

    N. Bourbaki, Éléments de Mathématique. Algèbre. Chap. 10. Algèbre Homologique, Masson, Paris (1980).

  4. 4.

    A. Ya. Khelemskii, Homology in Banach and Topological Algebras [in Russian], Moscow State Univ., Moscow (1986).

  5. 5.

    A. Ya. Khelemskii, “31 problems of the homology of the algebras of analysis,” in: Linear and Complex Analysis Book, Part I, Lect. Notes Math., Vol. 1573, Springer-Verlag (1994), pp. 54–78.

  6. 6.

    J. L. Taylor, Adv. Math.,9, 137–182 (1972).

Download references

Additional information

Moscow State Institute of Electronics and Mathematics. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 29, No. 4, pp. 68–72, October–December, 1995.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Akbarov, S.S. Pontryagin duality in the theory of topological modules. Funct Anal Its Appl 29, 276–279 (1995). https://doi.org/10.1007/BF01077475

Download citation

Keywords

  • Functional Analysis
  • Topological Module
  • Pontryagin Duality