Functional Analysis and Its Applications

, Volume 20, Issue 2, pp 94–103

Inverse scattering problem for the two-dimensional Schrödinger operator, the\(\bar \partial\)-method and nonlinear equations

  • P. G. Grinevich
  • S. V. Manakov
Article
  • 98 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. Ya. Povzner, "On a decomposition of arbitrary functions into the eigenfunctions of the operator −Δu + cu," Mat. Sb.,32, No. 1, 109–156 (1953).Google Scholar
  2. 2.
    L. D. Landau and E. M. Lifshitz, A Course of Theoretical Physics, Vol. 3, Quantum Mechanics. Nonrelativistic Theory, Pergamon (1977).Google Scholar
  3. 3.
    I. M. Gel'fand and B. M. Levitan, "Reconstruction of a differential equation for a given spectral function," Izv. Akad. Nauk SSSR, Ser. Mat.,15, No. 2, 309–360 (1951).Google Scholar
  4. 4.
    I. M. Gel'fand and B. M. Levitan, "A simple identity for eigenvalues of a second-order differential operator," Dokl. Akad. Nauk SSSR,88, No. 4, 593–596 (1953).Google Scholar
  5. 5.
    V. A. Marchenko, "Reconstruction of the potential energy for given phases of scattered waves," Dokl. Akad. Nauk SSSR,104, No. 5, 695–698 (1955).Google Scholar
  6. 6.
    L. D. Faddeev, "The inverse problem of the quantum scattering theory. II," in: Contemporary Mathematical Problems [in Russian], Vol. 3, VINITI, Moscow (1974).Google Scholar
  7. 7.
    K. Shadan and P. Sabat'e, The Inverse Problem in Quantum Scattering Theory [Russian translation], Mir, Moscow (1980).Google Scholar
  8. 8.
    B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, "Schrödinger equation in a periodic field and Riemannian surfaces," Dokl. Akad. Nauk SSSR,229, No. 1, 15–18 (1976).Google Scholar
  9. 9.
    A. P. Veselov and S. P. Novikov, "Finite-zone two-dimensional Schrödinger operators. Potential operators," Dokl. Akad. Nauk SSSR,279, No. 4, 784–788 (1984).Google Scholar
  10. 10.
    A. P. Veselov and S. P. Novikov, "Finite-zone two-dimensional Schrödinger operators. Explicit formulas and evolution equations," Dokl. Akad. Nauk SSSR,279, No. 1, 20–24 (1984).Google Scholar
  11. 11.
    P. G. Grinevich and R. G. Novikov, "Analogs of multisoliton potentials for the two-dimensional Schrodinger operator and the nonlocal Riemann problem," Dokl. Akad. Nauk SSSR,286, No. 1, 19–22 (1986).Google Scholar
  12. 12.
    P. G. Grinevich and R. G. Novikov, "Analogs of multisoliton potentials for the two-dimensional Schrödinger operator," Funkts. Anal. Prilozhen.,19, No. 4, 32–42 (1985).Google Scholar
  13. 13.
    R. G. Novikov, "Construction of the two-dimensional Schrödinger operator for the scattering amplitude with a fixed energy," Teor. Mat. Fiz.,66, No. 2, 234–240 (1986).Google Scholar
  14. 14.
    M. J. Ablowitz, D. Bar Jaacov, and A. S. Fokas, "On the inverse scattering transform for the Kadomtsev—Petviashvili equation," Stud. Appl. Math.,69, No. 2, 135–143 (1983).Google Scholar
  15. 15.
    A. S. Fokas and M. J. Ablowitz, "On the inverse scattering of the time-dependent Schrodinger equation and the associated Kadomtsev—Petviashvili equation," Stud. Appl. Math.,69, No. 3, 211–228 (1983).Google Scholar
  16. 16.
    A. S. Fokas and M. J. Ablowitz, "Method of solving for a class of multidimensional nonlinear evolution equations," Phys. Rev. Lett.,51, No. 1, 7–11 (1983).Google Scholar
  17. 17.
    A. J. Nachman and M. J. Ablowitz, "A multidimensional inverse-scattering method," Stud. Appl. Math.,71, No. 3, 243–250 (1984).Google Scholar
  18. 18.
    V. E. Zakharov and S. V. Manakov, "Construction of the multidimensional integrable systems and their solutions," Funkts. Anal. Prilozhen.,19, No. 2, 11–25 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • P. G. Grinevich
  • S. V. Manakov

There are no affiliations available

Personalised recommendations