Functional Analysis and Its Applications

, Volume 26, Issue 1, pp 13–20 | Cite as

Differential equations on the Prym theta function. a realness criterion for two-dimensional, finite-zone, potential Schrödinger operators

  • S. M. Natanzon


Differential Equation Functional Analysis Theta Function Realness Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. P. Veselov and S. P. Novikov,Finite-gap two-dimensional potential Schrödinger operators. Explicit formulas and evolution equations, Dokl. Akad. Nauk SSSR,279, No. 1, 20–24 (1984).Google Scholar
  2. 2.
    A. P. Veselov and S. P. Novikov,Finite-gap two-dimensional Schrödinger operators. Potential operators, Dokl. Akad. Nauk SSSR,279, No. 4, 784–788 (1984).Google Scholar
  3. 3.
    B. A. Dubrovin,Theta-functions and nonlinear equations, Usp. Mat. Nauk,36, No. 2, 11–80 (1981).Google Scholar
  4. 4.
    B. A. Dubrovin, I. M. Krichever, and S. P. Novikov,The Schrödinger equation in a periodic field and Riemann surfaces, Dokl. Akad. Nauk SSSR,229, No. 1, 15–18 (1976).Google Scholar
  5. 5.
    B. A. Dubrovin and S. M. Natanzon,Real theta-function solutions of the Kadomtscv—Petviashvili equation, Izv. Akad. Nauk SSSR, Ser. Mat.,52, No. 2, 267–286 (1988).Google Scholar
  6. 6.
    I. M. Krichever,Spectral theory of two-dimensional periodic operators and its applications, Usp. Mat. Nauk,44, No. 2, 121–184 (1989).Google Scholar
  7. 7.
    S. M. Natanzon,Nonsingular finite-gap two-dimensional Schrödinger operators and Prymians of real curves, Funkts. Anal. Prilozhen.,22, No. 1, 79–80 (1988).Google Scholar
  8. 8.
    S. M. Natanzon,Prymians of real curves and their applications to the effectivization of Schrödinger operators, Funkts. Anal. Prilozhen.,23, No. 1, 41–45 (1989).Google Scholar
  9. 9.
    I. A. Taimanov,Effectivization of theta-function formulas for two-dimensional Schrödinger potential operators that are finite-gap at a certain energy level, Dokl. Akad. Nauk SSSR,285, No. 5, 1067–1070 (1985).Google Scholar
  10. 10.
    I. A. Taimanov,Prym varieties of branched coverings, and nonlinear equations, Mat. Sb.,181, No. 7, 934–950 (1990).Google Scholar
  11. 11.
    I. V. Cherednik,On the conditions of reality in “finite-gap integration”, Dokl. Akad. Nauk SSSR,252, No. 5, 1104 1108 (1980).Google Scholar
  12. 12.
    E. Date, M. Jimbo, M. Kashiwara, and T. Miwa,Transformation groups for soliton equations. IV.A new hierarchy of soliton equations of KP-type, Phys. D,4, No. 3, 343–365 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • S. M. Natanzon

There are no affiliations available

Personalised recommendations