Advertisement

Functional Analysis and Its Applications

, Volume 29, Issue 1, pp 6–19 | Cite as

On Whitham's averaging method

  • A. Ya. Maltsev
  • M. V. Pavlov
Article

Keywords

Functional Analysis Average Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Whitham, Linear and Nonlinear Waves, Wiley, New York (1974).Google Scholar
  2. 2.
    B. A. Dubrovin and S. P. Novikov, “Hamiltonian formalism of one-dimensional systems of hydrodynamic type and the Bogolyubov-Whitham averaging method,” Dokl. Akad. Nauk SSSR,270, No. 4, 781–785 (1983).Google Scholar
  3. 3.
    B. A. Dubrovin and S. P. Novikov, “Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory,” Uspekhi Mat. Nauk,44, No. 6 (270), 29–98 (1989).Google Scholar
  4. 4.
    S. P. Novikov and A. Ya. Maltsev, “The Liouville form of averaged Poisson brackets,” Uspekhi Mat. Nauk,48, No. 1 (289), 155–156 (1993).Google Scholar
  5. 5.
    M. V. Pavlov, “The Hamiltonian structure of Whitham's equations,” Uspekhi Mat. Nauk,49, No. 1 (295), 219–220 (1994).Google Scholar
  6. 6.
    M. V. Pavlov, “Double Lagrangian representation of the KdV equation,” Dokl. Ross. Akad. Nauk,339, No. 2, 157–161 (1994).Google Scholar
  7. 7.
    S. P. Tsarev, “On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type,” Dokl. Akad. Nauk SSSR,282, No. 3, 534–537 (1985).Google Scholar
  8. 8.
    I. M. Krichever, “Averaging method for two-dimensional ‘integrable’ equations,” Funkts. Anal. Prilozhen.,22, No. 3, 37–52 (1988).Google Scholar
  9. 9.
    I. M. Krichever, “Spectral theory of two-dimensional operators and its applications,” Uspekhi Mat. Nauk,44, No. 2, 121–184 (1989).Google Scholar
  10. 10.
    M. J. Ablowitz and D. J. Benney, “The evolution of multiphase modes for nonlinear dispersive waves,” Stud. Appl. Math.,49, No. 3, 225–238 (1970).Google Scholar
  11. 11.
    W. D. Hayes, “Group velocity and nonlinear dispersive wave propagation,” Proc. Roy. Soc. London,332, 199–221 (1973).Google Scholar
  12. 12.
    H. Flaschka, M. G. Forest, and D. W. McLaughlin, “Multiphase averaging and the inverse spectral solution of the Korteweg-de Vries equation,” Comm. Pure Appl. Math.,33, No. 6, 739–784 (1980).Google Scholar
  13. 13.
    J. C. Luke, “A perturbation method for nonlinear dispersive wave problems,” Proc. Roy. Soc. London Ser. A,292, No. 1430, 403–412 (1966).Google Scholar
  14. 14.
    S. Yu. Dobrokhotov and V. P. Maslov, Finite-Gap Almost Periodic Solutions in the WKB Approximation. Contemporary Problems in Mathematics [in Russian], Vol. 15, Itogi Nauki i Tekhniki, VINITI, Moscow (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • A. Ya. Maltsev
  • M. V. Pavlov

There are no affiliations available

Personalised recommendations