Functional Analysis and Its Applications

, Volume 5, Issue 2, pp 111–117 | Cite as

Irreducible representations of Lie p-algebras

  • B. Yu. Veisfeiler
  • V. G. Kats


Functional Analysis Irreducible Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    B. Yu. Veisfeiler, "Remarks on some algebraic groups," Funktsional. Analiz i Ego Prilozhen.,4, No. 1, 91 (1970).Google Scholar
  2. 2.
    I. M. Gel'fand, M. I. Graev, and I. I. Pyatetskii-Shapiro, Theory of Representations and Automorphic Functions [in Russian], Nauka, Moscow (1966).Google Scholar
  3. 3.
    N. Jacobson, Lie Algebras, Interscience, New York (1962).Google Scholar
  4. 4.
    V. G. Kats, "Simple irreducible graded Lie algebras of finite growth," Izv. Akad. Nauk SSSR, Ser. Matem.,32, 1323–1367 (1968).Google Scholar
  5. 5.
    V. G. Kats, "On a classification of simple Lie algebras over a field of nonzero characteristic," Izv. Akad. Nauk SSSR., Ser. Matem.,34, 385–409 (1970).Google Scholar
  6. 6.
    A. I. Kostrikin and I. R. Shafarevich, "Graded Lie algebras of finite characteristic," Izv. Akad. Nauk SSSR, Ser. Matem.,33, 251–322 (1969).Google Scholar
  7. 7.
    A. N. Rudakov, "On the representation of the classical Lie algebras in characteristic p," Izv. Akad. Nauk SSSR, Ser. Matem.,34, 735–743 (1970).Google Scholar
  8. 8.
    A. N. Rudakov and I. R. Shafarevich, "Irreducible representations of a simple three-dimensional Lie algebra over a field of finite characteristic," Matem. Zametki,2, No. 5, 439–454 (1967).Google Scholar
  9. 9.
    R. Block, "The Lie algebras with a quotient trace form," Canad. J. Math.,9, No. 2, 277–285 (1965).Google Scholar
  10. 10.
    A. Borel and T. A. Springer, "Rationality properties of linear algebraic groups. II," Tohoku Math. J.,20, No. 4, 443–497 (1968).Google Scholar
  11. 11.
    Ho-Jui Chang, Über Wittsche Lie-Ringe," Abh. Math. Sem. Univ. Hamburg,14, 151–184 (1941).Google Scholar
  12. 12.
    C. W. Curtiss, "Representations of Lie algebras of classical type with applications to linear groups," J. Math. Mech.,9, 307–326 (1960).Google Scholar
  13. 13.
    Harish-Chandra, Automorphic Forms on Semi-simple Lie Groups, Lecture Notes in Mathematics, No. 62, Springer-Verlag, Berlin (1968).Google Scholar
  14. 14.
    H. Zassenhaus, "Über Liesche Ringe mit Primzahlcharacteristik," Abh. Math. Sem. Univ. Hamburg,13, No. 1/2, 1–100 (1939).Google Scholar
  15. 15.
    H. Zassenhaus, "The representations of Lie algebras of prime characteristic," Proc. Glasgow Math. Assoc.,2, No. 1, 1–36 (1954).Google Scholar

Copyright information

© Consultants Bureau 1970

Authors and Affiliations

  • B. Yu. Veisfeiler
  • V. G. Kats

There are no affiliations available

Personalised recommendations