Functional Analysis and Its Applications

, Volume 12, Issue 2, pp 113–121 | Cite as

Generalized Liouville method of integration of Hamiltonian systems

  • A. S. Mishchenko
  • A. T. Fomenko


Functional Analysis Hamiltonian System Liouville Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    J. Marsden and A. Weinstein, "Reduction of symplectic manifolds with symmetry," Reports Math. Phys.,5, No. 1, 121–130 (1974).Google Scholar
  2. 2.
    S. V. Manakov, "Remark on integration of Euler's dynamic equations for an n-dimensional solid," Funkts. Anal. Prilozhen.,10, No. 4, 93–94 (1976).Google Scholar
  3. 3.
    A. S. Mishchenko and A. T. Fomenko, "Integration of Euler's equations on semisimple Lie algebras," Dokl. Akad. Nauk SSSR,231, No. 3, 536–538 (1976).Google Scholar
  4. 4.
    A. S. Mishchenko and A. T. Fomenko, "Euler's equations on finite-dimensional Lie groups," Izv. Akad. Nauk SSSR, Ser. Mat.,42 (1978).Google Scholar
  5. 5.
    M. Duflo and M. Vergne, "Une propriété de la représentation coadjointe d'une algèbre de Lie," C. R. Acad. Sci. Paris,268, 583–585 (1969).Google Scholar
  6. 6.
    P. Bernat, N. Conze, and M. Vergne, "Représentations des groupes de Lie résolubles," to appear in: Monographies de la Société Mathématique de France, Dunod, Paris (1972).Google Scholar
  7. 7.
    N. N. Nekhoroshev, "Action-angle variables and their generalizations," Tr. Mosk. Mat. Ob-va,26, 181–198 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • A. S. Mishchenko
  • A. T. Fomenko

There are no affiliations available

Personalised recommendations