Theory and Decision

, Volume 34, Issue 1, pp 1–20

One-shot decisions under Linear Partial Information

  • Edward Kofler
  • Peter Zweifel
Article

Abstract

This paper purports to make a contribution to the analysis of a class of decisions that has received little attention in the literature, although it appears to be of considerable importance. Certain decisions cannot be repeated but must be made under fuzziness in the sense that state probabilities are not exactly known (LPI-fuzziness). The analysis of Linear Partial Information is applied to the principle of neglecting small probabilities found by Allais (1953), enabling the decision maker to break away from the maxmin criterion. By systematic exploitation of the fuzzy information available, strategies are shown to exist that provide payoffs whose lower bound exceeds the maxmin benchmark with sufficiently high probability. The same methodology is shown to be useful for dealing with the case of only ordinal preference orderings that are so typical of those crucial decisions that may be made only once in a lifetime.

Keywords

One-shot decision linear partial information preference ordering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allais, M. (1953), ‘Le comportement de l'homme rationnel devant le risque: Critique des postulats et axiomes de l'école américaine’,Econometrica 21, 503–546.Google Scholar
  2. Bamberg, G. and Coenenberg, A.G. (1981),Betriebswirtschaftliche Entscheidungslehre (Decision Theory for Business), München: Vahlen Verlag.Google Scholar
  3. Behara, M. (1990),Additive and Nonadditive Measures of Entropy, New Delhi: Wiley Eastern.Google Scholar
  4. Gaines, B. R. (1984), ‘Fundamentals of Decision: Probabilistic, Possibilistic and Other Forms of Uncertainty in Decision Analysis’, Zimmermann, H. J., Zadeh, L. A., and Gaines, B. R. (eds.),Fuzzy Sets and Decision Analysis, Amsterdam: North-Holland, 47–65.Google Scholar
  5. Hadley, G. (1969),Linear Algebra, London: Addison-Wesley.Google Scholar
  6. Kaufmann, A. (1983), ‘Advances in Fuzzy Sets — an Overview’, P. P. Wang (ed.),Advances in Fuzzy Sets, Possibility Theory and Applications, New York: Plenum Press, 13–30.Google Scholar
  7. Kofler, E. and Menges, G. (1976)Entscheidungen bei unvollständiger Information (Decisions under Partial Information), Berlin/Heidelberg: Springer.Google Scholar
  8. Kofler, E. and Menges, G. (1977), ‘Die Strukturierung von Unbestimmtheiten und eine Verallgemeinerung des Axiomensystems von Kolmogoroff für unbestimmte Wahrscheinlichkeiten’ (Structuring Uncertainty and Generalizing Kolmogorov's Axioms for the Case of Fuzzy Probabilities),Statistical Papers/Statistische Hefte 18(4), 298–302.Google Scholar
  9. Kofler, E. and Zweifel, P. (1988), ‘Exploiting Linear Partial Information for Forecasting — With an Application to U.S. Economic Policy’,International Journal of Forecasting 4, 15–32.Google Scholar
  10. Kofler, E. (1989),Prognosen und Stabilität bei unvollständiger Information (Forecasting and Stability under Fuzziness), Frankfurt/New York: Campus.Google Scholar
  11. Kofler, E. and Zweifel, P. (1991), ‘Convolution of Fuzzy Distributions in Decision-Making’,Statistical Papers/Statistische Hefte 32, 123–136.Google Scholar
  12. Zadeh, L. A. (1968), ‘Probability Measures of Fuzzy Events’,Journal of Mathematical Analysis and Application 23, 421–427.Google Scholar
  13. Zadeh, L. A. (1978), ‘Fuzzy Sets as a Basis for a Theory of Possibility’,Fuzzy Sets and Systems I(1), 3–28.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Edward Kofler
    • 1
  • Peter Zweifel
    • 1
  1. 1.Institute for Empirical Research in EconomicsUniversity of ZurichZurichSwitzerland

Personalised recommendations