Functional Analysis and Its Applications

, Volume 10, Issue 4, pp 259–273 | Cite as

Fractional powers of operators and Hamiltonian systems

  • I. M. Gel'fand
  • L. A. Dikii


Functional Analysis Hamiltonian System Fractional Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    C. S. Gardner, J. M. Green, M. D. Kruskal, and R. M. Miura, "Method for solving the KdV equation," Phys. Rev. Lett.,19, No. 19, 1095–1097 (1967).Google Scholar
  2. 2.
    P. Lax, "Integrals of nonlinear equations of evolution and solitary waves," Commun. Pure. Appl. Math.,21, No. 5, 467–490 (1968).Google Scholar
  3. 3.
    C. S. Gardner, "Korteweg—de Vries equation and generalizations. IV," J. Math. Phys.,12, No. 8, 1548–1551 (1971).Google Scholar
  4. 4.
    V. E. Zakharov and L. D. Faddeev, "The Korteweg—de Vries equation is a fully integrable Hamiltonian system," Funkts. Anal. Prilozhen.,5, No. 4, 18–27 (1971).Google Scholar
  5. 5.
    V. E. Zakharov and A. B. Shabat, "A scheme for the integration of the nonlinear equations of mathematical physics by the method of the inverse scattering problem," Funkts. Anal. Prilozhen.,8, No. 3, 43–53 (1974).Google Scholar
  6. 6.
    I. M. Krichever, "Reflection-free potentials in a background of finitely zoned ones," Funkts. Anal. Prilozhen.,9, No. 2, 77–78 (1975).Google Scholar
  7. 7.
    S. P. Novikov, "A periodic problem for the Korteweg—de Vries equation. I,"Funkts'. Anal. Prilozhen.,8, No. 3, 54–66 (1974).Google Scholar
  8. 8.
    B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, "Nonlinear equations of Korteweg—de Vries type, finitely zoned linear operators, and Abelian manifolds," Usp. Mat. Nauk,30, No. 1, 55–136 (1975).Google Scholar
  9. 9.
    I. M. Gel'fand and L. A. Dikii, "Asymptotics of the resolvent of the Sturm—Liouville equations and the algebra of the Korteweg—de Vries equations," Usp. Mat. Nauk,30, No. 5, 67–100 (1975).Google Scholar
  10. 10.
    I. M. Gel'fand and L. A. Dikii, "Lattice of a Lie algebra in formal variational calculus," Funkts. Anal. Prilozhen.,10, No. 1, 18–25 (1976).Google Scholar
  11. 11.
    L. A. Dikii, "The zeta-function of an ordinary differential equation on a finite segment," Izv. Akad. Nauk SSSR, Ser. Matem.,19, 187–200 (1955).Google Scholar
  12. 12.
    R. T. Seeley, "The powers As of an elliptic operator," Matematika,12, No. 1, 96–112 (1968).Google Scholar
  13. 13.
    E. Titchmarsh, Introduction to the Theory of the Fourier Integral, Clarendon Press, Oxford (1937).Google Scholar
  14. 14.
    I. M. Gel'fand, Yu. I. Manin, and M. A. Shubin, "Poisson brackets and the kernel of a variational derivative in formal variational calculus," Funkts. Anal. Prilozhen.,10, No. 4, 30–34 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • I. M. Gel'fand
  • L. A. Dikii

There are no affiliations available

Personalised recommendations