Advertisement

Functional Analysis and Its Applications

, Volume 2, Issue 2, pp 106–114 | Cite as

Compact quaternion spaces

  • D. V. Alekseevskii
Article

Keywords

Functional Analysis Quaternion Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York and London (1962).Google Scholar
  2. 2.
    K. Yano and S. Bochner, Curvature and Betti Numbers [Russian translation], IL, Moscow (1957).Google Scholar
  3. 3.
    D. V. Alekseevskii, "Riemann spaces with nonstandard holonomy groups," Funkts. Analiz.,2, No. 2, 1–10 (1968).Google Scholar
  4. 4.
    J. A. Wolf, "Locally symmetric homogeneous spaces," Comm. Math. Helv.,37, 65–101 (1962).Google Scholar
  5. 5.
    H. Freudental, "Clifford-Wolf isometrien symmetrische Raume," Math. Ann.,150, No. 2, 136–149 (1963).Google Scholar
  6. 6.
    A. Lichnerowicz, "Espaces homogeneous kähleriens," Coll.Int. de Geom. Diff., Strassbourg, 171–184 (1953).Google Scholar
  7. 7.
    A. Borel, "Kählerian coset spaces of semisimple Lie groups," Proc. Nat. Acad. Sic. USA,40, 1147–1151 (1954).Google Scholar
  8. 8.
    J. A. Wolf, "Complex homogeneous manifolds and quaternionic symmetric spaces," J. Math. Mech.,14, No. 6, 1033–1047 (1965).Google Scholar
  9. 9.
    B. Kostant, "Holonomy and Lie algebras of motions in Riemannian manifolds," Trans. Amer. Math. Soc.,80, 528–542 (1955).Google Scholar
  10. 10.
    É. B. Vinberg, "Invariant linear connectivity in homogeneous space," Trudy Mosk. Matem. O-va,9, 191–210 (1960).Google Scholar
  11. 11.
    B. Kostant, "A characterization of invariant affine connections," Nagoya Math. J.,16, 35–50 (1960).Google Scholar
  12. 12.
    J. Yano, "On Kählerian homogeneous spaces of unimodular groups," Amer. J. Math.,79, 885–900 (1957).Google Scholar

Copyright information

© Consultants Bureau 1968

Authors and Affiliations

  • D. V. Alekseevskii

There are no affiliations available

Personalised recommendations