Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Proof of the topological equivalence of all separable infinite-dimensional Banach spaces

  • 133 Accesses

  • 14 Citations

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    M. Fréchet, Abstract Spaces [in French], Paris (1928).

  2. 2.

    S. Mazur, A remark on homeomorphisms of functional fields [in French], Studia Math.,1, 83–85 (1929).

  3. 3.

    S. Kaczmarz, The homeomorphy of certain spaces, Bull. Acad. Polon. Sci.,145–148 (1933).

  4. 4.

    C. Banach, Course in Functional Analysis [Ukrainian translation from the French], Radyans'ka shkola, Kiev (1948).

  5. 5.

    H. Stone, Notes on integration. II, Proc. Nat. Acad. Sci. USA,34, 447–455 (1948).

  6. 6.

    M. I. Kadets, Homeomorphisms of certain Banach spaces, DAN SSSR,122, No. 1, 13–16 (1958).

  7. 7.

    M. I. Kadets, Topological equivalence of uniformly convex spaces, UMN,10, No. 4, 137–141 (1955).

  8. 8.

    M. I. Kadets, Weak and strong convergence, DAN SSSR,122, No. 1, 13–16 (1958).

  9. 9.

    M. I. Kadets, Combined boundaries of weak and strong convergences, DAN USSR, No. 9, 949–952 (1959).

  10. 10.

    M. I. Kadets and B. Ya. Levin, Solution of Banach's problem of the topological equivalence of spaces of continuous functions, Tr. semin. po funckts. analizu, No. 3–4, 20–25, Voronezh (1965)

  11. 11.

    M. I. Kadets, Topological equivalence of certain cones of Banach spaces, UMN,20, No. 3, 183–187 (1965).

  12. 12.

    V. L. Klee, Mappings into normed linear spaces, Fund. Math.,49, 286–290 (1960).

  13. 13.

    C. Bessaga, and A. Pelczynski, Some remarks on homeomorphisms of B-spaces, Bull. Acad. Polon. Sci.,8, 757–760 (1960).

  14. 14.

    K. Borsuk, Isomorphisms of function spaces [in German], Bull. Acad. Polon. Sci., pp. 1–18 (1933).

  15. 15.

    M. I. Kadets, Topological equivalence of all separable Banach spaces, DAN SSSR,167, 23–25 (1966).

  16. 16.

    C. Bessaga, Topological equivalence of all separable Banach spaces, Fund. Math.,56, 251–288 (1965).

  17. 17.

    L. A. Lyusternik and V. I. Sobolev, Elements of Functional Analysis, sec. ed. [in Russian], Nauka, Moscow (1965).

  18. 18.

    M. I. Kadets, Isomorphic locally Uniformly convex spaces, Izv. Vuzov, ser. matem., No. 6, 51–57 (1958).

  19. 19.

    M. I. Kadets, Letter to the Editor, Izv. Vuzov, ser. matem., No. 6, 186–187 (1961).

  20. 20.

    R. G. Bartle and L. M. Graves, Letter to the Editor, Trans. Amer. Math. Soc.,72, 400–413 (1952).

Download references

Additional information

Kharkov Institute for Public Construction Engineering. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 1, No. 1, pp. 61–70.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kadets, M.I. Proof of the topological equivalence of all separable infinite-dimensional Banach spaces. Funct Anal Its Appl 1, 53–62 (1967). https://doi.org/10.1007/BF01075865

Download citation

Keywords

  • Banach Space
  • Functional Analysis