Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Volterra integral operators in some Banach functional spaces

  • 56 Accesses

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    M. S. Brodskii, Dokl. Akad. Nauk SSSR,111, No. 5, 926–929 (1956).

  2. 2.

    M. S. Brodskii, Usp. Matem. Nauk,12, No. 2, 129–132 (1957).

  3. 3.

    L. A. Sakhnovich, Dokl. Akad. Nauk SSSR,115, No. 4, 666–669 (1957).

  4. 4.

    W. F. Donoghue, Pacific J. Math.,7, No. 2, 1031–1035 (1957).

  5. 5.

    M. S. Brodskii and M. S. Livshits, Usp. Matem. Nauk,13, No. 1, 3–85 (1958).

  6. 6.

    G. É. Kisilevskii, Izv. Akad. Nauk SSSR, Ser. Matem.,32, 3–23 (1968).

  7. 7.

    G. É. Kisilevskii, Funktsional. Analiz i Ego Prilozhen.,1, No. 3, 90–91 (1967).

  8. 8.

    L. A. Sakhnovich, Izv. Akad. Nauk SSSR, Ser. Matem.,22, 229–308 (1958).

  9. 9.

    I. M. Gel'fand, D. A. Raikov, and G. E. Shilov, Commutative Normed Rings [in Russian], Fizmatgiz, Moscow (1960).

  10. 10.

    E. Titchmarsh, Introduction to the Theory of Fourier Integrals, Clarendon Press, Oxford (1937).

  11. 11.

    M. S. Brodskii, Triangular and Jordan Representations of Linear Operators [in Russian], Nauka, Moscow (1969).

Download references

Additional information

Zhitomir State Pedagogic Institute. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 8, No. 4, pp. 85–86, October–December, 1974.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kisilevskii, G.É. Volterra integral operators in some Banach functional spaces. Funct Anal Its Appl 8, 344–346 (1974). https://doi.org/10.1007/BF01075496

Download citation

Keywords

  • Functional Analysis
  • Integral Operator
  • Functional Space
  • Volterra Integral Operator