Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Structure of homogeneous Riemann spaces with zero Ricci curvature

  • 232 Accesses

  • 47 Citations

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    K. Yano and S. Bochner, Curvature and Betti Numbers, Princeton University Press (1953).

  2. 2.

    J. Hano, "On Kählerian homogeneous spaces of unimodular groups," Amer. J. Math.,79, 885–900 (1957).

  3. 3.

    D. V. Alekseevskii, "Riemann spaces with extraordinary holonomy groups," Funktsional. Analiz i Ego Prilozhen.,2, No. 2, 1–10 (1968).

  4. 4.

    D. V. Alekseevskii, "Compact quaternion spaces," Funktsional. Analiz i Ego Prilozhen.,2, No. 2, 11–21 (1968).

  5. 5.

    Y. Guivarch, "Groupes de Lie a croissance polynomiale," C.R. Acad. Sci. Paris,271, No. 4, 237–239 (1970).

  6. 6.

    A. S. Shvarts, "A solid invariant of coverings," DAN SSSR,105, No. 1, 32–34 (1955).

  7. 7.

    J. Milnor, "A note on curvature and fundamental groups," J. Diff. Geom.,2, No. 1, 1–7 (1968).

  8. 8.

    J. A. Wolf, "Growth of the finitely generated solvable groups and curvature of Riemannian manifolds," J. Diff. Geom.,2, No. 4, 421–446 (1968).

  9. 9.

    P. Günter, "Einige sätze über das volumenelement eines Riemannschen raumes," Publ. Math. Debrecen,7, Nos. 1–4, 78–93 (1960).

  10. 10.

    G. de Rham, "Sur la reductibilité d'un espace de Riemann," Comm. Math. Helv.,26, No. 4, 328–343 (1952).

  11. 11.

    A. Weil, Integration in Topological Groups and Its Applications [Russian translation], IL, Moscow (1950).

Download references

Additional information

Scientific-Research Institute of Organic Intermediates and Dyes. Institute of Control Problems, Academy of Sciences of the USSR. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 9, No. 2, pp. 5–11, April–June, 1975.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alekseevskii, D.V., Kimel'fel'd, B.N. Structure of homogeneous Riemann spaces with zero Ricci curvature. Funct Anal Its Appl 9, 97–102 (1975). https://doi.org/10.1007/BF01075445

Download citation

Keywords

  • Functional Analysis
  • Ricci Curvature
  • Riemann Space
  • Homogeneous Riemann Space