Functional Analysis and Its Applications

, Volume 26, Issue 4, pp 231–246 | Cite as

A theory of noncommutative determinants and characteristic functions of graphs

  • I. M. Gel'fand
  • V. S. Retakh


Functional Analysis Characteristic Function Noncommutative Determinant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Artin, Geometric Algebra, Interscience, New York (1957).Google Scholar
  2. 2.
    M. Artin, W. Shelter, and J. Tate,Quantum deformations of GL n, Comm. Pure Appl. Math.44, 879–895 (1991).Google Scholar
  3. 3.
    A. Cayley,On certain results relating to quaternions, Phil. Mag.,26, 141–145 (1845).Google Scholar
  4. 4.
    A. Capelli,Über die Zurückführung der Cayley'shen Operationen Ωund gewöhnlishe Polar-operationen, Math. Ann.,29, 331–338 (1887).Google Scholar
  5. 5.
    F. A. Berezin, Introduction to Superanalysis, Reidel, Dordrecht (1987).Google Scholar
  6. 6.
    G. M. Bergman, Skew-fields of noncommutative rational functions, after Amitsur, Sem. Schützenberger-Lentin-Nivat 1969/70 (1970).Google Scholar
  7. 7.
    G. M. Bergman,Rational relations and rational identities in division rings I, II, J. Algebra,43, 252–266, 267–297 (1976).Google Scholar
  8. 8.
    P. Cohn, Skew-Field Constructions, London Math. Soc. Lecture Note Series, Vol. 27 (1977).Google Scholar
  9. 9.
    P. Cartier and D. Foata, Problemes combinatories de commutation et rearrangements, Springer Lecture Notes, Vol. 85 (1969).Google Scholar
  10. 10.
    H. Bass, AlgebraicK-Theory, Benjamin, New-York (1968).Google Scholar
  11. 11.
    J. Dieudonné,Les determinantes sur une corps non commutatif, Bull. Soc. Math. France,71, 27–45 (1943).Google Scholar
  12. 12.
    J. Dieudonné, La geometrie des groupes classiques, Springer, Berlin (1963).Google Scholar
  13. 13.
    D. Foata,A noncommutative version of the matrix inversion formula, Adv. Math.,31, No 3, 330–349 (1979).Google Scholar
  14. 14.
    D. Foata,A combinatorial proof of Jacobi's identity, Ann. Discrete Math.,6, 125–135 (1980).Google Scholar
  15. 15.
    F. R. Gantmakher, Theory of Matrices [in Russian], Nauka, Moscow (1988).Google Scholar
  16. 16.
    I. M. Gel'fand and V. S. Retakh,Determinants of matrices over noncommutative rings, Funkts. Anal. Prilozhen.,25, No. 2, 13–25 (1991).Google Scholar
  17. 17.
    A. Heyting,Die Theorie der linearen Gleichungen in einer Zahlenspezies mit nichtkommutativer Multiplikation, Math. Ann.,98, 465–490 (1927).Google Scholar
  18. 18.
    R. Howe and T. Umeda,The Capelli identity, the double commutant theorem, and the multiplicities-free actions, Math. Ann.,290, 565–619 (1991).Google Scholar
  19. 19.
    J. Joly, Supplement toOevres of Hamilton (1900).Google Scholar
  20. 20.
    P. P. Kulish and E. K. Sklyanin,Quantum spectral transform method. Recent developments, Lecture Notes in Phys.,151, 61–119 (1982).Google Scholar
  21. 21.
    B. Kostant and S. Sahi,The Capelli identity, tube domains and the generalized Laplace transform, Adv. Math.,87, 71–92 (1991).Google Scholar
  22. 22.
    Yu. I. Manin,Multiparameter quantum deformations of the general linear supergroup, Comm. Math. Phys.,123, 163–175 (1989).Google Scholar
  23. 23.
    K. Okamoto,Bäcklund transformations of classical orthogonal polynomials, in Algebraic Analysis, Vol. 1 (ed. by M. Kashiwara and T. Kawai) (1988), pp. 647–657.Google Scholar
  24. 24.
    O. Ore,Linear equations in non-commutative rings, Ann. Math.,32, 463–477 (1931).Google Scholar
  25. 25.
    A. R. Richardson,Hypercomplex determinants, Messenger of Math.,55, 145–152 (1926).Google Scholar
  26. 26.
    A. B. Richardson,Simultaneous linear equations over a division algebra, London Math. Soc.,28, 395–420 (1928).Google Scholar
  27. 27.
    M. Sato and M. Kashiwara,The determinant of matrices of pseudodifferential operators, Proc. Japan Acad. Sci.,51, No 1., 17–19 (1975).Google Scholar
  28. 28.
    J. H. M. Wedderburn,On continued fractions in non-commutative quantities, Ann. Math.,15, 101–105 (1913–14).Google Scholar
  29. 29.
    H. Weyl, Classical Groups, Their Invariants and Representations, Princeton Univ. Press (1946).Google Scholar
  30. 30.
    R. F. Williams, A New Zeta Function, Natural for Links. Preprint, University of Texas at Austin (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • I. M. Gel'fand
  • V. S. Retakh

There are no affiliations available

Personalised recommendations