Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Computing subdifferentials of marginal functions

  • 30 Accesses

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    Yu. N. Tyurin, “A simplified model of industrial planning,” Ekonom. Mat. Metody,1, No. 3, 391–406 (1965).

  2. 2.

    E. G. Gol'shtein, Convex Programming: Elements of the Theory [in Russian], Nauka, Moscow (1970).

  3. 3.

    A. I. Sotskov, “Necessary conditions of minimum for one type of nonsmooth problems,” Dokl. Akad. Nauk SSSR,189, No. 2, 261–264 (1969).

  4. 4.

    V. F. Dem'yanov, Minimax: Directional Differentiability [in Russian], Izd. Leningr. Gos. Univ., Leningrad (1974).

  5. 5.

    V. F. Dem'yanov and V. N. Malozemov, Introduction to Minimax [in Russian], Nauka, Moscow (1972).

  6. 6.

    V. V. Beresnev and B. N. Pshenichnyi, “On differential properties of minimum functions,” Zh. Vychisl. Mat. Mat. Fiz.,14, No. 3, 639–651 (1974).

  7. 7.

    R. Rockafellar, Convex Analysis [Russian translation], Mir, Moscow (1973).

  8. 8.

    B. N. Pshenichnyi, Convex Analysis and Extremal Problems [in Russian], Nauka, Moscow (1980).

  9. 9.

    B. N. Pshenichnyi, Necessary Conditions of Extremum [in Russian], Nauka, Moscow (1982).

  10. 10.

    I. I. Eremin and N. N. Astaf'ev, Introduction to the Theory of Linear and Convex Programming [in Russian], Nauka, Moscow (1976).

  11. 11.

    V. V. Fedorov, Minimum Seeking Methods [in Russian], Izd. Mosk. Univ., Moscow (1975).

  12. 12.

    W. W. Hogan, “Directional derivatives for extremal values functions,” West. Manag. Sci. Inst., No. 177, 25–29 (1971).

  13. 13.

    J.-B. Hiriart-Urruty, “Gradients generalises de functions marginales,” C. R. Acad. Sci. Paris,A283, A333-A335 (1976).

  14. 14.

    J.-B. Hiriart-Urruty, “Gradients generalises de functions marginales,” SIAM J. Contro. Optim.,16, 301–316 (1978).

  15. 15.

    J. Gauvin and F. Dubeau, “Differential properties of the marginal function in mathematical programming,” Math. Progr. Study,19, 101–119 (1982).

  16. 16.

    A. Auslander, “Differential stability in non-convex and non-differential programming,” Math. Progr. Study,10, 29–41 (1979).

  17. 17.

    F. Clarke, “Generalized gradients and application,” Trans. AMS,205, 247–261 (1975).

  18. 18.

    F. Clarke, “A new approach to Lagrange multipliers,” Math. Oper. Res.,1, 167–174 (1976).

  19. 19.

    F. Clarke, “Generalized gradients of Lipschitz functionals,” Adv. Math.,40, 52–67 (1981).

  20. 20.

    W. W. Hogan, “Point-to-set maps in mathematical programming,” SIAM Rev.,15, No. 3, 591–603 (1973).

Download references

Additional information

Translated from Kibernetika, No. 2, pp. 72–76, March–April, 1986.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Minchenko, L.I. Computing subdifferentials of marginal functions. Cybern Syst Anal 22, 234–239 (1986). https://doi.org/10.1007/BF01074786

Download citation

Keywords

  • Operating System
  • Artificial Intelligence
  • System Theory
  • Marginal Function