Advertisement

Journal of Productivity Analysis

, Volume 6, Issue 1, pp 63–76 | Cite as

Iterated bootstrap with applications to frontier models

  • Peter Hall
  • Wolfgang Härdle
  • Léopold Simar
Article

Abstract

The iterated bootstrap may be used to estimate errors which arise from a single pass of the bootstrap and thereby to correct for them. Here the iteration is employed to correct for coverage probability of confidence intervals obtained by a percentile method in the context of production frontier estimation with panel data. The parameter of interest is the maximum of the intercepts in a fixed firm effect model. The bootstrap distribution estimators are consistent if and only if there are no ties for this maximum. In the regular case (no ties), poor distribution estimators can result when the second largest intercept is close to the maximum. The iterated bootstrap is thus suggested to improve the accuracy of the obtained distributions. The result is illustrated in the analysis of labor efficiency of railway companies.

Keywords

Bootstrap iterated bootstrap frontier models railways efficiency percentile method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beran, R. (1987). “Prepivoting to reduce level error of confidence sets.”Biometrika 74, 457–468.Google Scholar
  2. Davison, A.C., Hinkley, D.V., and Schechtman. (1986). “Efficient bootstrap simulation.”Biometrika 73, 555–566.Google Scholar
  3. Farrell, M.J. (1957). “The measurement of production efficiency.”Journal of the Royal Statistical Society A 120, 253–281.Google Scholar
  4. Gathon, H.J. and S. Perelman. (1990). “Measuring technical efficiency in national railways: A panel data approach.” Mimeo, Université de Liège, Belgium.Google Scholar
  5. Gleason, J.R. (1988). “Algorithms for balanced bootstrap simulations.”American Statisticians 42, 263–266.Google Scholar
  6. Hall, P. (1986). “On the bootstrap and confidence intervals.”Annals of Statistics 14, 1431–1452.Google Scholar
  7. Hall, P. (1992).The Bootstrap and Edgeworth Expansion, New York/Berlin: Springer-Verlag.Google Scholar
  8. Hall, P., Härdle, W., and L. Simar. (1993). “On the inconsistency of bootstrap distribution estimators.”Computational Statistics and Data Analysis 16, 11–18.Google Scholar
  9. Hall, P. and M.A. Martin. (1988). “On bootstrap resampling and iteration.”Biometrika 75, 661–671.Google Scholar
  10. Loh, W.-Y. (1987). “Calibrating confidence coefficients.”Journal of the American Statistical Association 82, 155–162.Google Scholar
  11. Schmidt, P. and R.E. Sickles. (1984). “Production frontiers and panel data.”Journal of Business and Economic Statistics 2, 367–374.Google Scholar
  12. Simar, L. (1992). “Estimating efficiencies from frontier models with panel data: A comparison of parametric, nonparametric and semiparametric methods with bootstrapping.”The Journal of Productivity Analysis 3, 171–203.Google Scholar
  13. U.I.C. (1970–1983).Statistiques Internationales des Chemins de Fer, Union Internationale des Chemins de Fer, Paris.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Peter Hall
    • 1
  • Wolfgang Härdle
    • 2
  • Léopold Simar
    • 3
  1. 1.Centre for Mathematics and its ApplicationsAustralian National UniversityCanberraAustralia
  2. 2.Institut für Statistik und ÖkonometrieHumboldt Universität zu BerlinBerlinGermany
  3. 3.Institut de Statistique and COREUniversité Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations