Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On the convergence of α-model balancing methods

  • 11 Accesses

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    G. E. Pukhov, Selected Topics in Theory of Mathematical Machines, [in Russian], izd. Naukova dumka, Kiev, 1964.

  2. 2.

    D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra [in Russian], Fizmatgiz, Moscow, 1960.

  3. 3.

    M. Parodi, Sur Quelques Propriétés des Valeurs Characteristiques des Matrices Carrées [Russian translation], IL, Moscow, 1960.

  4. 4.

    P. N. Chinaev, Multidimensional Automatic Systems [in Russian], Gostekhizdat, Kiev, 1963.

  5. 5.

    N. Ya. Vilenkin, and V. N. Gorin, et al., Functional Analysis [in Russian], izd Nauka, Moscos, 1964

  6. 6.

    G. E. Pukhov, “A method for obtaining zero-potential and equipotential points in electronic models,” Kibernetika, no. 2, Kiev, 1965.

  7. 7.

    B. A. Borkovskii, “A method of dynamic modeling of noninertial objects,” Kibernetika, no. 3, Kiev, 1965.

  8. 8.

    I. I. Éterman, Continuous Mathematical Machines [in Russian], Mashgiz, Moscow, 1957.

  9. 9.

    W. V. Petryshyn, “Direct and iterative methods for the solution of linear operator equations in Hilbert space,” Transactions of the American Mathematical Society, vol. 105, no. 1, 1962.

Download references

Additional information

Institute of Cybernetics, AS UkrSSR, Kiev. Translated from Kibernetika, Vol. 5, No. 4, pp. 62–66, July–August, 1969.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mishutin, V.G. On the convergence of α-model balancing methods. Cybern Syst Anal 5, 427–432 (1969).

Download citation


  • Operating System
  • Artificial Intelligence
  • System Theory
  • Balance Method