, Volume 19, Issue 3, pp 309–316 | Cite as

Doubly transitive groups of type pm(pm−1) and maximal nonbinary codes generated by them

  • B. M. Zlotnik


Operating System Artificial Intelligence System Theory Transitive Group Nonbinary Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    R. D. Carmichael, Introduction to the Theory of Groups of Finite Order, Boston (1937).Google Scholar
  2. 2.
    V. I. Korzhik and L. M. Fink, Noiseproof Coding of Discrete Messages in Channels with a Random Structure [in Russian], Svyaz', Moscow (1975).Google Scholar
  3. 3.
    É. L. Blokh and V. V. Zyablov, Generalized Cascade Codes [in Russian], Svyaz', Moscow (1976).Google Scholar
  4. 4.
    D. Forni, Cascade Codes [Russian translation], Mir, Moscow (1970).Google Scholar
  5. 5.
    M. Hall, Theory of Groups, MacMillan, New York (1959).Google Scholar
  6. 6.
    B. M. Zlotnik, “An algorithm of numeration of the Mathieu groups M11 and M12, and error correlation in codes equivalent to these groups,” Kibernetika, No. 1, 40–44 (1978).Google Scholar
  7. 7.
    K. A. Rybnikov, Introduction to Combinatorial Analysis [in Russian], Moscow University Press, Moscow (1972).Google Scholar
  8. 8.
    B. M. Zlotnik and B. R. Levin, “Power spectra of code sequences with constant weight,” Radiotekh. Elektron., No. 10, 1878–1882 (1964).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • B. M. Zlotnik

There are no affiliations available

Personalised recommendations