Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Decomposition of graphs

  • 73 Accesses

  • 18 Citations

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    S. Foldes and P. L. Hammer, “Split graphs,” Preprint, Univ. Waterloo, CORR 76-3, Waterloo (1976).

  2. 2.

    R. E. Burkazd and P. L. Hammer, “A note on Hamiltonian split graphs,” J. Comin. Theory,28, No. 2, 245–248 (1980).

  3. 3.

    S. Foldes and P. L. Hammer, “Split graphs,” in: Proc. 8th South-Eastern Conf. Combinatorics, Graph Theory and Computing, Univ. of Lonisiana (1977), pp. 311–315.

  4. 4.

    S. Foldes and P. L. Hammer, “Split graphs having Dilworth number two,” Canad. J. Math.,24, No. 3, 666–672 (1977).

  5. 5.

    S. Foldes and P. L. Hammer, “On split graphs and some related questions,” in: Proc. Intern. Coll. “Problems Combinatoires et Theorie des Graphes,” Orsay, 1976, Paris (1978), pp. 139–140.

  6. 6.

    Nara Chie, “Split graphs with Dilworth number three,” Natur. Sci. Rept. Ochanomizu Univ.,33, Nos. 1/2, 37–44 (1982).

  7. 7.

    R. I. Tyshkevich and A. A. Chernyak, “Unigraphs. 1–3,” Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 5, 5–11 (1978); No. 1, 5–12; No. 2, 5–11 (1979).

  8. 8.

    R. I. Tyshkevich, “Canonical decomposition of a graph,” Dokl. Akad. Nauk BSSR,24, No. 8, 677–679 (1980).

  9. 9.

    R. I. Tyshkevich, O. I. Mel'nikov, and V. M. Kotov, “Graphs and degree sequences: canonical decomposition,” Kibernetika, No. 6, 5–8 (1981).

  10. 10.

    R. I. Tyshkevich and A. A. Chernyak, “Canonical decomposition of a graph, defined by degrees of its vertices,” Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 5, 14–26 (1979).

  11. 11.

    R. I. Tyshkevich, “The canonical decomposition of a graph,” in: 27th Intern. Viss. KOOIJ, Vol. 5, Ilmenau (1982), pp. 183–186.

  12. 12.

    R. I. Tyshkevich and Zh. A. Chernyak, “Catalog of planar unigraphs,” Dokl. Akad. Nauk BSSR,23, No. 4, 307–310 (1979).

  13. 13.

    Zh. A. Chernyak, “Hamiltonian unigraphs,” Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 1, 23–29 (1981).

  14. 14.

    S. L. Hakimi and E. F. Schmeichel, “Graphs and their degree sequences: a survey,” Lect. Notes Math.,642, 225–235 (1978).

  15. 15.

    Zh. A. Chernyak and A. A. Chernyak, “Sequences of degrees of edges and their realization,” Dokl. Akad. Nauk BSSR,25, No. 4, 594–597 (1981).

  16. 16.

    V. Chvatal and P. L. Hammer, “Aggregation of inequalities in integer programming,” Ann. Discr. Math.,1, 145–162 (1977).

  17. 17.

    C. Benzaken and P. L. Hammer, “Linear separation of dominating sets in graphs,” Ann. Diser. Math.,3, 1–10 (1978).

  18. 18.

    M. C. Golumbic, “Threshold graphs and synchronizing parallel processes,” Combinatorics ′76,1, 419–428 (1978) (Proc. 5th Hung. Coll. Combin.).

  19. 19.

    M. C. Columbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York (1980).

  20. 20.

    P. L. Hammer, T. Ibaraki, and B. Simeone, “Degree sequences of threshold graphs,” in: Proc. 9th South-Eastern Conf. on Combinatorics, Graph Theory and Computing (Univ. of Louisiana) (1978), pp. 329–355.

  21. 21.

    P. L. Hammer, T. Ibaraki, and B. Simeone, “Threshold sequences,” SIAM J. Alg. Diser. Meth.,2, 39–49 (1981).

  22. 22.

    P. B. Henderson and Y. Zalstein, “A graph theoretic characterization of thePVchunk class of the synchronizing primitives,” SIAM J. Comput.,6, 88–108 (1977).

  23. 23.

    J. Orlin, “The minimal integral separator of a threshold graph,” Ann. Discr. Math.,1, 415–419 (1977).

  24. 24.

    U. N. Peled, “Threshold graph enumeration and series-product identities,” in: Proc. 11th South-Eastern Conf. on Combinatorics, Graph Theory and Computing (Univ. of Louisiana) (1980), pp. 735–738.

Download references

Additional information

Translated from Kibernetika, No. 2, pp. 67–74, March–April, 1985.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tyshkevich, R.I., Chernyak, A.A. Decomposition of graphs. Cybern Syst Anal 21, 231–242 (1985). https://doi.org/10.1007/BF01072106

Download citation

Keywords

  • Operating System
  • Artificial Intelligence
  • System Theory