Advertisement

Behavior Genetics

, Volume 13, Issue 1, pp 65–75 | Cite as

Enzyme polymorphism associated with habitat choice in the intertidal snailTegula funebralis

  • Bruce A. Byers
Article

Abstract

The black turban snail,Tegula funebralis, is found in the intertidal zone of the North American Pacific coast, a region of extreme spatial heterogeneity. Associations between genetic polymorphism and habitat choice are predicted by theoretical models of the maintenance of genetic polymorphism in spatially heterogeneous environments, such as that occupied byTegula funebralis. Habitat choice was studied in individually marked snails at two locations. Genotypes of marked snails were then determined at two highly polymorphic enzyme loci, leucine aminopeptidase (LAP) and phosphoglucose isomerase (PGI), using starch gel electrophoresis. Multiple regression analysis showed that a snail's size, sex, and enzyme genotype were associated with its habitat selection behavior.

Key Words

habitat choice enzyme polymorphism intertidal snail Tegula funebralis individual-marking technique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Byers, B. A. (1980).The Ecological Behavioral Genetics of Habitat Selection in an Intertidal Snail, Tegula funebralis, Ph.D. thesis, University of Colorado, Boulder.Google Scholar
  2. Byers, B. A., and Mitton, J. B. (1981). Habitat choice in the intertidal snailTegula funebralis.Mar. Biol. 65:149–154.Google Scholar
  3. Cavener, D. (1979). Preference for ethanol inDrosophila melanogaster associated with the alcohol dehydrogenase polymorphism.Behav. Genet. 9:359–365.Google Scholar
  4. De Souza, H. M. L., Da Cunha, A. B., and Dos Santos, E. P. (1970). Adaptive polymorphism of behavior evolved in laboratory populations ofDrosophila willistoni.Am. Nat. 104:175–189.Google Scholar
  5. Fawcett, M. H. (1979).The Consequences of Latitudinal Variation in Predation for Some Marine Intertidal Herbivores, Ph.D. thesis. University of California, Santa Barbara.Google Scholar
  6. Frank, P. W. (1975). Latitudinal variation in the life history features of the black turban snailTegula funebralis (Prosobranchia: Trochidae).Mar. Biol. 31: 181–192.Google Scholar
  7. Giesel, J. T. (1970). On the maintenance of a shall pattern and behavior polymorphism inAcmaea digitalis, a limpet.Evolution 24:98–119.Google Scholar
  8. Hedrick, P. W., Ginevan, M. E., and Ewing, E. P. (1976). Genetic polymorphism in heterogeneous environments.Ann. Rev. Ecol. Syst. 7:1–32.Google Scholar
  9. Hoffmann, R. J. (1981a). Evolutionary genetics ofMetridium senile. I. Kinetic differences in phophoglucose isomerase allozymes.Biochem. Genet. 19:129–144.Google Scholar
  10. Hoffmann, R. J. (1981b). Evolutionary genetics ofMetridium senile. II. Geographic patterns of allozyme variation.Biochem. Genet. 19:145–154.Google Scholar
  11. Kettelwell, H. B. D. (1955). Recognition of appropriate backgrounds by the pale and black phases of Lepidoptera.Nature 175:943–944.Google Scholar
  12. Koehn, R. K. (1978). Biochemical aspects of genetic variation at the LAP locus inMytilus edulis. In Battaglia, B., and Beardmore, J. A. (eds.),Marine Organisms, Plenum Press, New York and London.Google Scholar
  13. Koehn, R. K., Milkman, R., and Mitton, J. B. (1976). Population genetics of marine pelecypods. IV. Selection, migration, and genetic differentiation in the blue musselMutilus edulis.Evolution 30:2–32.Google Scholar
  14. Levene, H. (1953). Genetic equilibrium when more than one niche is available.Am. Nat. 87:331–333.Google Scholar
  15. Maynard Smith, J. (1966). Sympatric speciation.Am. Nat. 100:637–650.Google Scholar
  16. Mitton, J. B., Linhart, Y. B., Hamrick, J. L., and Beckman, J. S. (1977). Observations on the genetic structure and mating system of ponderosa pine in the Colorado Front Range.Theor. Appl. Genet. 51: 5–13.Google Scholar
  17. Nie, N. H., Hull, C. H., Jenkins, J. G., Steinbernner, K., and Bent, D. H. (1975).Statistical Package for the Social Sciences, 2nd ed., McGraw-Hill, New York.Google Scholar
  18. Paine, R. T. (1969). ThePisaster-Tegula interaction: Prey patches, predator food preference, and intertidal community structure.Ecology 50: 950–961.Google Scholar
  19. Powell, J. R., and Taylor, C. E. (1979). Genetic variation in ecologically diverse environments.Am. Sci. 67:590–596.Google Scholar
  20. Sargent, T. D. (1966). Background selections of geometrid and noctuid moths.Science 154:1674–1675.Google Scholar
  21. Sedlmair, H. (1956). Verhaltens-, Resistenz-, und Gehäuseunterschiede bei den polymorphen BänderschneckenCepaea hortensis (Müll.) undCepaea nemoralis (L.).Biol. Zentr. 75:281–313.Google Scholar
  22. Silcock, M., and Parsons, P. A. (1973). Temperature preference differences between strians ofMus Musculus, associated variables and ecological implications.Oecologia 13:147–160.Google Scholar
  23. Taylor, C. E. (1975). Genetic loads in heterogeneous environments.Genetics 80:621–635.Google Scholar
  24. Taylor, C. E., and Powell, J. R. (1978). Habitat choice in natural populations ofDrosophila.Oecologia 37:69–75.Google Scholar
  25. Trpis, M., and Hausermann, W. (1975). Demonstration of differential domesticity ofAedes aegypti (L.) (Diptera, Culicidae) in Africa by mark-release-recapture.Bull. Entomol. Res. 65:199–208.Google Scholar
  26. Watt, W. B. (1977). Adaptation at specific loci. I. Natural selection on phosphoglucose isomerase ofColias butterflies: Biochemical and population aspects.Genetics 87:177–194.Google Scholar
  27. Wecker, S. C. (1963). The role of early experience in habitat selection by the prairie deer mouse,P. Maniculatus bairdii.Ecol. Monogr. 33:307–325.Google Scholar
  28. Wilkins, N. P. (1977). Genetic variability in littoral gastropods: Phosphoglucose isomerase and phosphoglucomutase inPatella vulgata andP. aspera.Mar. Biol. 40:151–155.Google Scholar
  29. Wilkins, N. P., O'Regan, D., and Moynihan, E. (1978). Electrophoretic variability and temperature sensitivity of phosphoglucose isomerase and phosphoglucomutase in Littorinids and other marine molluscs. In Battaglia, B., and Beardmore, J. A. (eds.),Marine Organisms, Plenum Press, New York and London.Google Scholar
  30. Young, J. P. W., Koehn, R. K., and Arnheim, N. (1979). Biochemical characterization of “LAP,” a polymorphic aminopeptidase from the blue mussel,Mytilus edulis.Biochem. Genet. 17:305–323.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • Bruce A. Byers
    • 1
  1. 1.Department of Environmental, Population and Organismic BiologyUniversity of ColoradoBoulder

Personalised recommendations