Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Ergodic properties of a multichannel queueing system with a constraint

  • 11 Accesses

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    D. Y. Barrer, “Queueing with impatient customers and ordered service,” Oper. Res., New York, no. 5, 1957.

  2. 2.

    I. N. Kovalenko, “Study of a multilinear congestion system with a queue and a restricted sojourn time in the system,” Ukrainskii matematicheskii zhurnal Kiev, vol. 12, no. 6, 1960.

  3. 3.

    I. N. Kovalenko, “Some problems of queueing systems with a constraint,” Teoriya veroyatnostei i ee primeneniya, Moscow, vol. 6, no. 2, 1961.

  4. 4.

    L. G. Afanas'eva, “A condition of ergodicity for queueing system with a restricted sojourn time,” teoriya veroyatnostei i ee primeneniya, Moscow, no. 3, 1965.

  5. 5.

    Kiefer and Wolfowitz, On the Theory of Queues, J. Roy. Statist. Soc. B, vol. 13, no. 2 1951.

  6. 6.

    B. A. Sevast'yanov, “Ergodic theorem for Markov processes and its application to telephone lines with rejections,” Teoriya veroyatnostei i ee primeneniya, Moscow vol. 2, no. 1, 1957.

  7. 7.

    I. N. Kovalenko, “Some analytic methods in queueing theory,” collection: Cybernetics in the Service of Communism [in Russian], izd-vo Energiya, Moscow, 1964.

  8. 8.

    D. Daley, General Customer Impatience in the Queue GI(G)I, Journal of Applied Probability, vol. 2, no. 1, 1965.

  9. 9.

    D. V. Lindley, The Theory of Queues with a Single Server, Proc. Cambridge Phil. Soc., London, vol. 48, 1952.

  10. 10.

    E. A. Presman, “Waiting time in a multilinear queueing, system,” Teoriya veroyatnostei i ee primeneniya, Moscow, vol. 10, no. 1, 1965.

  11. 11.

    W. Smith, “Theory of Renewal and related questions” Matematike (collection of translation) [in Russian] Moscow, vol. 3, no. 3, 1961.

  12. 12.

    W. Smith, Regenerative Stochastic Process, Proc. Roy. Soc., London, A,232, 1955.

Download references

Additional information

Voronezh Civil Engineering Institute. Krasnodarsk Polytechnic Institute. Translated from Kibernetika, Vol. 4, No 6, pp. 62–69, 1968.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Afanas'eva, L.G., Martynov, A.V. Ergodic properties of a multichannel queueing system with a constraint. Cybern Syst Anal 4, 76–85 (1968). https://doi.org/10.1007/BF01071498

Download citation


  • Operating System
  • Artificial Intelligence
  • System Theory
  • Queueing System
  • Ergodic Property