Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Conformally flat solutions to the Einstein-Maxwell equations

  • 49 Accesses

  • 3 Citations


The integration of the Einstein-Maxwell equations for an anisotropic charged fluid sphere acting as a source of the Reissner-Nordström metric is considered, under the assumption of a conformally flat interior metric. The solutions asymptotically tend to static configurations. In the isotropic pressure limiting case, the non-static solutions are found to be incompatible with charged models.

This is a preview of subscription content, log in to check access.


  1. Banerjee, A. and Santos, N. O.: 1981,J. Math. Phys. 22, 824.

  2. Fock, V. A.: 1964,The Theory of Space, Time and Gravitation, Pergamon Press, Oxford.

  3. Misner, C. W. and Sharp, D. H.: 1964,Phys. Rev. B 136, 571.

  4. Novikov, I. D.: 1967,Soviet Astron. A. J. 10, 731.

  5. Ponce de León, J.: 1986,J. Math. Phys. 27, 271.

  6. Ponce de León, J.: 1988,J. Math. Phys. 29, 197.

  7. Rago, H.: 1989,J. Math. Phys. 30, 1747.

  8. Som, M. M. and Santos, N. O.: 1980,J. Phys. A 13, 191.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Melfo, A., Rago, H. Conformally flat solutions to the Einstein-Maxwell equations. Astrophys Space Sci 193, 9–15 (1992).

Download citation


  • Static Configuration
  • Charged Model
  • Fluid Sphere
  • Isotropic Pressure
  • Charged Fluid