Cybernetics

, Volume 11, Issue 2, pp 252–256 | Cite as

Methods for computing mutually inverse functions

  • Yu. V. Blagoveshchenskii
  • B. A. Popov
  • G. S. Tesler
Article

Literature Cited

  1. 1.
    L. F. Kozachenko, “Computation of the probability integral and the problem of finding argument with respect to a given Laplace function,” in: Collection of Programs for Electronic Digital Computer MIR [in Russian], Vol. 2, Part 5, Izd. Naukova Dumka, Kiev (1971).Google Scholar
  2. 2.
    G. S. Tesler, “Modifications of methods of Chebyshev and Domoryad for constructing higher-order iterations,” in: Algorithms and Programs for Computing Functions on the Electronic Digital Computer [in Russian], Vol. 1, Izd. Inst. Kibernetiki Akad. Nauk UkrSSR, Kiev (1972).Google Scholar
  3. 3.
    G. S. Tesler, “Computation of some elementary functions on the Digital Computer,” in: Mathematical Security of the Electronic Computer and Effective Organization of the Computing Process [in Russian], Vol. 2, Izd. Inst. Kibernetiki Akad. Nauk UkrSSR, Kiev (1967).Google Scholar
  4. 4.
    G. S. Tesler, “Expansion of elementary functions in error series,” in: Algorithms and Programs for Computing Functions on the Electronic Digital Computer [in Russian], Vol. 1, Izd. Inst. Kibernetiki Akad. Nauk UkrSSR, Kiev (1972).Google Scholar
  5. 5.
    B. A. Popov, “Best approximation to a convex function by a polygonal line,” in: Algorithms and Programs for Computing Functions on the Electronic Digital Computer [in Russian], Vol. 1. Izd Inst. Kibernetiki Akad. Nauk UkrSSR, Kiev (1972).Google Scholar
  6. 6.
    A. J. Strecok, “On the calculation of the inverse of the error function,” Mathematics of Computation,22, No. 101 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • Yu. V. Blagoveshchenskii
  • B. A. Popov
  • G. S. Tesler

There are no affiliations available

Personalised recommendations