Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Convergence of algorithms for finding saddle points

  • 53 Accesses

  • 1 Citations

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    D. Blackwell and M. A. Grishick, Theory of Games and Statistical Decisions, Wiley, New York (1966).

  2. 2.

    K. J. Arrow, L. Hurwicz, and H. Uzawa (editors), Studies in Linear and Non-Linear Programming, Stanford University Press, Stanford (1972).

  3. 3.

    E. G. Gol'shtein, “Generalized gradient method of finding saddle points,” Ekonom. Mat. Metody,8, No. 4 (1972).

  4. 4.

    Yu. M. Ermol'ev and N. Z. Shor, “On the minimization of nondifferentiable functions,” Kibernetika, No. 1, 101–102 (1967).

  5. 5.

    E. A. Nurminskii, “Convergence conditions for nonlinear programming algorithms,” Kibernetika, No. 6, 79–81 (1972).

  6. 6.

    Yu. M. Ermol'ev, Methods of Stochastic Programming [in Russian], Nauka, Moscow (1976).

  7. 7.

    Yu. M. Ermol'ev, “Methods for solving nonlinear extremal problems,” Kibernetika, No. 4, 1–18 (1966).

  8. 8.

    Yu. M. Ermol'ev and E. A. Nurminskii, “Limiting extremal problems,” Kibernetika, No. 4, 130–132 (1973).

Download references

Additional information

Translated from Kibernetika, No. 3, pp. 112–116, May–June, 1977.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nurminskii, E.A., Verchenko, P.I. Convergence of algorithms for finding saddle points. Cybern Syst Anal 13, 430–435 (1977). https://doi.org/10.1007/BF01069664

Download citation


  • Operating System
  • Artificial Intelligence
  • System Theory
  • Saddle Point
  • Find Saddle Point