Cybernetics

, Volume 20, Issue 4, pp 484–492 | Cite as

Classification analysis of heuristic algorithms for graph coloring

  • A. A. Shneider
Article
  • 77 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. A. Zykov, Theory of Finite Graphs [in Russian], Vol. 1, Nauka, Novosibirsk (1969).Google Scholar
  2. 2.
    D. Brelaz, “New methods to color the vertices of a graph,” Comm. ACM,22, No. 4, 251–256 (1979).Google Scholar
  3. 3.
    A. A. Zykov, “Properties of linear complexes,” Mat. Sb.,24(66), No. 2, 163–188 (1949).Google Scholar
  4. 4.
    A. P. Ershov, Introduction to Theoretical Programming [in Russian], Nauka, Moscow (1977).Google Scholar
  5. 5.
    S. Goodman and S. Hidetnieme, Introduction to Development and Analysis of Algorithms [Russian translation], Mir, Moscow (1981).Google Scholar
  6. 6.
    R. D. Dutton and R. C. Brigham, “A new graph-coloring algorithm,” Computer J.,24, No. 1, 85–86 (1981).Google Scholar
  7. 7.
    Yu. M. Noskov and P. P. Sypchuk, “Algorithm for chromatic partition of the set of graph vertices and its practical realization,” Tr. Mos. Inst. Electron. Mash.,56, 37–42 (1975).Google Scholar
  8. 8.
    F. T. Leighton, “A graph coloring algorithm for large scheduling problems,” J. Res. Nat. Bur. Stand.,84, No. 6, 488–506 (1979).Google Scholar
  9. 9.
    S. V. Bykova and V. P. Ivolga, “Evaluating the efficiency of minimal partition algorithms,” Vychisl. Tekhn. Mashinostr.,2, 79–86 (1974).Google Scholar
  10. 10.
    V. Yu. Sandberg, “Heuristic graph coloring algorithm,” Tr. NII Mat. VGU,12, 58–64 (1974).Google Scholar
  11. 11.
    B. A. Gladkikh, I. A. Ivashintsov, and V. V. Matushevskii, “Approximate algorithm of large-dimension graph coloring,” Tr. Sib. Fiz.-Tekhn. Inst.,62, 65–74 (1971).Google Scholar
  12. 12.
    M. Kubale and J. Dabrowski, “Empirical comparison of efficiency of some graph coloring algorithms,” Arch. Automat. Telemech.,23, Nos. 1–2, 129–139 (1978).Google Scholar
  13. 13.
    D. W. Matula, G. Marble, and J. D. Isaacson, “Graph coloring algorithms,” in: Graph Theory of Computing, Academic Press, New York (1972), pp. 109–122.Google Scholar
  14. 14.
    D. J. A. Welsh and M. B. Powell, “An upper bound for the chromatic number of a graph and its applications to timetabling problems,” Computer J.,10, No. 1, 85–86 (1967).Google Scholar
  15. 15.
    D. S. Johnson, “Worst-case behavior of graph coloring algorithms,” in: Proceedings of the Fifth Southeastern Conference on Combinatorics, Graph Theory and Computing, Utilitas Mathematical Publishing, Winnipeg (1974), pp. 513–527.Google Scholar
  16. 16.
    M. R. Garey and D. S. Johnson, “The complexity of near-optimal graph coloring,” J. ACM,23, No. 1, 43–49 (1976).Google Scholar
  17. 17.
    L. Kučera, “Expected behavior of graph coloring algorithms,” Lect. Notes Comput. Sci.,56, 447–451 (1977).Google Scholar
  18. 18.
    Colin McDiarmid, “Coloring random graphs badly,” Res. Notes Math., No. 34, 76–86 (1979).Google Scholar
  19. 19.
    N. Cristophides, Graph Theory: An Algorithmic Approach [Russian translation], Mir, Moscow (1978).Google Scholar
  20. 20.
    A. A. Shneider, “Algorithms for coloring the vertices of a graph,” in: Algorithms for Solution of Logico-Combinatorial Problems [in Russian], Inst. Tekh. Kibern. Akad. Nauk BSSR, Minsk (1980), pp. 31–36.Google Scholar
  21. 21.
    A. D. Zakrevskii, Algorithms for Synthesis of Discrete Automata [in Russian], Nauka, Moscow (1971).Google Scholar
  22. 22.
    D. C. Wood, “A technique for coloring a graph applicable to large-scale timetabling problems,” Computer J.,12, No. 4, 317–319 (1969).Google Scholar
  23. 23.
    A. A. Shneider, “Construction of pseudorandom graphs,” in: Automation of Logic Design [in Russian], Inst. Tekhn. Kibern. Akad. Nauk BSSR, Minsk (1982), pp. 140–142.Google Scholar
  24. 24.
    A. D. Zakrevskii and N. R. Toropov, LYAPAS: A Programming System [in Russian], Nauka i Tekhnika, Minsk (1978).Google Scholar
  25. 25.
    S. M. Ermakov and G. A. Mikhailov, A Course of Statistical Modeling [in Russian], Nauka, Moscow (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • A. A. Shneider

There are no affiliations available

Personalised recommendations