, Volume 8, Issue 2, pp 174–182 | Cite as

Some algorithmic problems for groups and context-free languages

  • A. V. Anisimov


Operating System Artificial Intelligence System Theory Algorithmic Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    P. S. Novikov, “On algorithmic unsolvability of the identity problem,” Dokl. Akad. Nauk SSSR,85, No. 4 (1952).Google Scholar
  2. 2.
    P. S. Novikov, “On algorithmic unsolvability of the identity problem of words in group theory,” Proceedings V. A. Steklov Mathematics Institute, Vol. 44, Mir, Moscow (1955).Google Scholar
  3. 3.
    S. Ginsburg, The Mathematical Theory of Context-Free Languages, McGraw-Hill, New York (1966).Google Scholar
  4. 4.
    W. Magnus, “The identity problem for groups with one defining relation,” Uspekhi Matematicheskikh Nauk, No. 8, 365–376 (1941).Google Scholar
  5. 5.
    A. V. Anisimov, “On equations over free groups,” in: Theoretical Cybernetics, No. 1, Izd. IK AN UkrSSR, Kiev (1970).Google Scholar
  6. 6.
    A. V. Anisimov, “Group languages,” Kibernetika, No. 4 (1971).Google Scholar
  7. 7.
    Y. Bar-Hillel, M. Perles, and E. Shamir, “On formal properties of simple phrase structure grammars,” Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikationsforschung,14 (1961).Google Scholar
  8. 8.
    B. H. Neumann, “Adjunction of elements to groups,” Journal of the London Mathematical Society,18 (1943).Google Scholar
  9. 9.
    S. Ginsburg and S. A. Greibach, “Deterministic context-free languages,” Information and Control,9 (1966).Google Scholar
  10. 10.
    S. Ginsburg, T. N. Hibbard, and T. S. Ullian, “Sequences in context-free languages,” Illinous Journal of Mathematics,9 (1965).Google Scholar
  11. 11.
    E. F. Moore, “Gedanken experiments on sequential machines,” in: Automata Studies, Princeton University Press (1956).Google Scholar
  12. 12.
    M. O. Rabin and D. Scott, “Finite automata and their decision problems,” IBM Journal of Research and Development,3 (1959).Google Scholar
  13. 13.
    A. J. Korenjak and J. E. Hopcroft, “Simple deterministic languages,” IEEE Conference Record of 7th Annual Symposium on Switching and Automata Theory, Berkeley, California, October (1966).Google Scholar
  14. 14.
    R. McNaughton, “Parenthesis grammars,” Journal of the ACM,14 (1967).Google Scholar

Copyright information

© Consultants Bureau 1974

Authors and Affiliations

  • A. V. Anisimov

There are no affiliations available

Personalised recommendations