Advertisement

Cybernetics and Systems Analysis

, Volume 27, Issue 3, pp 354–366 | Cite as

Disnel: An application package for solving discrete and nonlinear optimization problems

  • V. S. Mikhalevich
  • I. V. Sergienko
  • N. Z. Shor
  • V. A. Trubin
  • V. I. Artemenko
  • V. A. Roshchin
  • N. G. Zhurbenko
  • L. N. Kozeratskaya
  • T. T. Lebedeva
  • G. A. Potapchuk
Article
  • 22 Downloads

Abstract

The paper describes the features of the DISNEL package for interactive solution of a wide range of discrete and nonlinear optimization problems of ES computers.

Keywords

Operating System Artificial Intelligence System Theory Nonlinear Optimization Application Package 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. S. Mikhalevich, I. V. Sergienko, T. T. Lebedeva, et al., “DISPRO application package for solving discrete programming problems,” Kibernetika, No. 3, 117–137 (1981).Google Scholar
  2. 2.
    V. S. Mikhalevich, I. V. Sergienko, N. Z. Shor, et al., “DISPRO-3 program package: purpose, classes of solvable problems, system and algorithmic software,” Kibernetika, No. 1, 56–71 (1985).Google Scholar
  3. 3.
    V. S. Mikhalevich, I. V. Sergienko, V. A. Trubin, et al., “Application package for solving large production-transportation planning problems (PLANER),” Kibernetika, No. 3, 57–71, 79 (1983).Google Scholar
  4. 4.
    I. V. Sergienko, Mathematical Models and Methods for Solving Discrete Optimization Problems [in Russian], Naukova Dumka, Kiev (1988).Google Scholar
  5. 5.
    V. S. Mikhalevich (ed.), Computational Methods for Selecting Optimal Design Solutions [in Russian], Naukova Dumka, Kiev (1977).Google Scholar
  6. 6.
    O. V. Volkovich, V. A. Roshchin, and I. V. Sergienko, “On models and methods of solution of integer quadratic programming problems,” Kibernetika, No. 3, 1–15 (1987).Google Scholar
  7. 7.
    O. V. Volkovich, “Application of the method of sequential analysis of alternatives for the solution of integer quadratic programming problems,” in: Design and Development of Program Packages [in Russian], Inst. Kiber. Akad. Nauk UkrSSR, Kiev (1987), pp. 40–44.Google Scholar
  8. 8.
    V. S. Mikhalevich, V. A. Trubin, and N. Z. Shor, Optimization Problems of Production-Transportation Planning [in Russian], Nauka, Moscow (1986).Google Scholar
  9. 9.
    V. A. Trubin and F. A. Sharifov, “Theoretical and experimental analysis of a problem with production capacity constraints,” in: Mathematical Models of Planning and Control in Complex Systems [in Russian], Inst. Kiber. Akad. Nauk UkrSSR, Kiev (1986), pp. 8–14.Google Scholar
  10. 10.
    V. A. Roshchin and I. V. Sergienko, “An approach to the solution of the covering problem,” Kibernetika, No. 6, 65–69 (1984).Google Scholar
  11. 11.
    V. A. Roshchin and I. V. Sergienko, “A solution method for the partial covering problem,” Kibernetika, No. 1, 96–98 (1989).Google Scholar
  12. 12.
    B. N. Pshenichnyi, Linearization Method [in Russian], Nauka, Moscow (1983).Google Scholar
  13. 13.
    N. Z. Shor, Methods of Minimization of Nondifferentiable Functions and Their Applications [in Russian], Naukova Dumka, Kiev (1979).Google Scholar
  14. 14.
    A. M. Priyatel', “A method of allowing for constraints in a piecewise-linear programming problem,” in: Methods of Solution of Complex Mathematical Programming Problems [in Russian], Inst. Kiber. Akad. Nauk UkrSSR, Kiev (1985), pp. 16–20.Google Scholar
  15. 15.
    N. Z. Shor and S. I. Stetsenko, Quadratic Extremal Problems and Nondifferentiable Optimization [in Russian], Naukova Dumka, Kiev (1989).Google Scholar
  16. 16.
    S. K. Andrusenko, E. A. Nurminskii, and P. I. Stetsyuk, “Numerical experiments with a new class of linear programming algorithms,” Zh. Vychisl. Mat. Mat. Fiz.,27, No. 3, 349–356 (1987).Google Scholar
  17. 17.
    L. S. Lasdon, Optimization Theory for Large Systems, Macmillan, New York (1970).Google Scholar
  18. 18.
    Yu. A. Dan'ko and G. A. Potapchuk, “Working with matrix data in application packages using the MIDAS file management system,” in: Design and Development of Program Packages [in Russian], Inst. Kiber. Akad. Nauk UkrSSR, Kiev (1987), pp. 86–90.Google Scholar
  19. 19.
    G. A. Potapchuk, “An approach to data organization in problem-oriented file management systems,” in: Application Packages and Numerical Methods [in Russian], Inst. Kiber. Akad. Nauk UkrSSR, Kiev (1988), pp. 48–52.Google Scholar
  20. 20.
    G. A. Potapchuk, “An approach to the development of the system component of optimization packages,” in: Mathematical and System Software for Discrete Optimization Problems [in Russian], Inst. Kiber. Akad. Nauk UkrSSR, Kiev (1989), pp. 42–47.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • V. S. Mikhalevich
  • I. V. Sergienko
  • N. Z. Shor
  • V. A. Trubin
  • V. I. Artemenko
  • V. A. Roshchin
  • N. G. Zhurbenko
  • L. N. Kozeratskaya
  • T. T. Lebedeva
  • G. A. Potapchuk

There are no affiliations available

Personalised recommendations