Behavior Genetics

, Volume 23, Issue 6, pp 519–524 | Cite as

A third source of developmental differences

  • Peter C. M. Molenaar
  • Dorret I. Boomsma
  • Conor V. Dolan


An illustrative list is presented of human and animal studies which each point to the existence of a third source, in addition to genetic and environmental factors, underlying phenotypic differences in development. It is argued that this third source may consist of nonlinear epigenetic processes that can create variability at all phenotypical-somatic and behavioral-levels. In a quantitative genetic analysis with human subjects, these processes are confounded with within-family environmental influences. A preliminary model to quantify these influences is introduced.

Key Words

Developmental noise epigenetic processes neural networks chaotic dynamics biological patterning biometrical models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benno, R. H. (1990). Development of the nervous system: Genetics, epigenetics and phylogenetics. In Hahn, M. E., Hewitt, J. K., Henderson, N.D., and Benno, R. H. (eds.),Developmental Behavior Genetics: Neural, Biometrical, and Evolutionary Approaches, Oxford University Press, New York, pp. 113–143.Google Scholar
  2. Boomsma, D. I., and Molenaar, P. C. M. (1987). The genetic analysis of repeated measures. I. Simplex models.Behav. Genet. 17:111–123.Google Scholar
  3. Boomsma, D. I., Molenaar, P. C. M., and Orlebeke, J. F. (1990). Estimation of individual genetic and environmental factor scores.Genet. Epidemiol. 7:83–91.Google Scholar
  4. Burgess, R. L., and Molenaar, P. C. M. (1993). Human behavioral biology: A reply to R. Lerner and A. von Eye “Sociobiology and Human Development: Arguments and Evidence”.Hum. Dev. 36:45–54.Google Scholar
  5. Clayton, G.A., Morris, J. A., and Robertson, A. (1957). An experimental check on quantitative genetic theory. I. Short-term responses to selection.J. Genet. 55:137–151.Google Scholar
  6. Côté, G. B., and Gyftodimou J. (1991). Twinning and mitotic crossing-over: Some possibilities and their implications.Am. J. Hum. Genet. 49:120–130.Google Scholar
  7. Eaves, L. J., Long, J., and Heath, A. C. (1986). A theory of developmental change in quantitative phenotypes applied to cognitive development.Behav. Genet. 16:143–162.Google Scholar
  8. Eaves, L. J., Hewitt, J. K., and Heath, A. C. (1988). The quantitative genetic study of human developmental change: A model and its limitations. In Weir, B. S., Eisen, E. J., Goodman, M. M., and Namkoong, G. (eds.),Proceedings of the Second International Conference on Quantitative Genetics Sinauer, Sunderland, MA, pp. 297–311.Google Scholar
  9. Edelman, G. M. (1987)Neural Darwinism: The Theory of Neuronal Group Selection, Basic Books, New York.Google Scholar
  10. Gaertner, K. (1990). A third component causing random variability beside environment and genotype: A reason for the limited success of a 30 year long effort to standardize laboratory animals?Lab. Anim. 24:71–77.Google Scholar
  11. Hall, J. G. (1990). Genomic imprinting: Review and relevance to human diseases.Am. J. Hum. Genet. 46:857–873.Google Scholar
  12. Johnston, T. D. (1987). Developmental explanation and the ontogeny of birdsong: Nature/Nurture redux.Brain Behav. Sci. 11:617–663.Google Scholar
  13. Kurnit, D. M., Layton, W. M., and Matthysse, S. (1987). Genetics, chance, and morphogenetics.Am. J. Hum. Genet. 41:979–995.Google Scholar
  14. Mather, K. (1973).Genetic Structure of Populations, Chapman and Hall, London.Google Scholar
  15. Mather, K., and Jinks, J. L. (1977).Introduction to Biometrical Genetics, Chapman and Hall, London.Google Scholar
  16. Meinhardt, H. (1982).Models of Biological Pattern Formation, Academic Press, London.Google Scholar
  17. Molenaar, P. C. M. (1986). On the impossibility of acquiring more powerful structures: A neglected alternative.Hum. Dev. 29:245–251.Google Scholar
  18. Molenaar, P. C. M., Boomsma, D. I., and Doian, C. V. (1991). Genetic and environmental factors in a developmental perspective. In Magnusson D., Bergman, L. R., Rudinger, G., and Törestad, B. (eds.),Problems and Methods in Longitudinal Research: Stability and Change, Cambridge University Press, Cambridge.Google Scholar
  19. Moon, F. C. (1987).Chaotic Vibrations, Wiley, New York.Google Scholar
  20. Nicolis, G., and Prigogine, I. (1977).Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations, Wiley, New York.Google Scholar
  21. Oster, G., and Alberch, P. (1982). Evolution and bifurcation of developmental programs.Evolution 36(3):444–459.Google Scholar
  22. Plomin, R. (1986).Development, Genetics and Psychology, Lawrence Erlbaum, Hillsdale, NJ.Google Scholar
  23. Plomin, R., and Daniels, D. (1987). Why are children in the same family so different from one another?Behav. Brain Sci. 10:1–60.Google Scholar
  24. Plomin, R., DeFries, C., and Fulker, D. W. (1988).Nature and Nurture During Infancy and Early Childhood, Cambridge University Press, Cambridge.Google Scholar
  25. Province, W. B. (1986).Sewall Wright and Evolutionary Biology, University of Chicago Press, Chicago.Google Scholar
  26. Reeve, E. C. R. (1960). Some genetic tests on asymmetry of sternopleural chaetae number in Drosophila.Genet. Res. 1:151–172.Google Scholar
  27. Scarr, S., and Weinberg, R. A. (1983). The Minnesota adoption studies: Genetic differences and malleability.Child Dev. 54:260–267.Google Scholar
  28. Schierwagen, A. (1990). Microenvironmental constrants and morphological differentiation in mammalian central neurons. In Maynard Smith, J. and Vida, G. (eds.),Organizational Constraints on the Dynamics of Evolution, Manchester University Press, Manchester, pp. 167–189.Google Scholar
  29. Soong, T. T. (1973).Random Differential Equations in Science and Engineering, Academic Press, New York.Google Scholar
  30. Stanley, H. E., and Ostrowsky, N. (1986).On Growth and From: Fractal and Non-Fractal Patterns in Physics, Reidel, Dordrecht.Google Scholar
  31. Waddington, C. H. (1957).The Strategy of the Genes, Allen & Unwin, London.Google Scholar
  32. Wilson, R. S. (1983). Human behavioral development and genetics.Acta Genet. Med. Gemmellol. 32:1–16.Google Scholar
  33. Wright, S. (1920). The relative importance of heredity and environment in determining the piebald pattern of guinea pigs.Proc. Natl. Acad. Sci. USA 6:320–332.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Peter C. M. Molenaar
    • 1
  • Dorret I. Boomsma
    • 2
  • Conor V. Dolan
    • 1
  1. 1.Department of PsychologyUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Experimental PsychologyFree UniversityAmsterdamThe Netherlands

Personalised recommendations