Advertisement

Behavior Genetics

, Volume 20, Issue 2, pp 169–189 | Cite as

The behavioral genetics ofCaenorhabditis elegans

  • Eve Wolinsky
  • Jeffrey Way
Articles

Abstract

Caenorhabditis elegans, a small free-living soil nematode, is an ideal organism for the genetic dissection of simple behaviors. Over 150 genes required for normal behavior have been identified. We review here the neural and genetic pathways underlying four of the best-studiedC. elegans behaviors: locomotion, response to gentle touch, egg-laying, and chemotaxis. Mutations affecting these behaviors have identified genes which specify neuronal cell lineage, neuronal cell fate, and the formation of cell matrix cues involved in axonal guidance. Molecular analysis of genes required for normal behavior offers the prospect of characterizing functionally important nervous system proteins, regardless of their abundance or biochemical role.

Key Words

C. elegans chemosensory mechanosensory egg-laying mec-3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albertson, D. G., and Thomson, J. N. (1976). The pharynx ofCaenorhabditis elegans.Phil. Trans. R. Soc. Lond. B 275:299–325.Google Scholar
  2. Boucaut, J.-C., Danibere, T., Poole, T. J., Aoyama, H., Yamada, K., and Thiery, J. P. (1984). Biologically active synthetic peptides as probes of embryonic development: A competitive peptide inhibitor of fibronectin function inhibits gastrulation in amphibian embryos and neural crest cell migration in avian embryos.J. Cell Biol. 99:18822–1830.Google Scholar
  3. Brenner, S. (1974). The genetics ofCaenorhabditis elegans.Genetics 77:71–94.Google Scholar
  4. Caddy, K. W. T., and Biscoe, T. J. (1979). Structural and quantitative studies on the normal C3H andLurcher mutant mouse.Phil. Trans. Roy. Soc. B 287:167–201.Google Scholar
  5. Cassada, R. C., and Russell, R. L. (1975). The dauer larva, a post-embryonic developmental variant of the nematodeCaenorhabditis elegans.Dev. Biol. 46:326–342.Google Scholar
  6. Chalfie, M. (1982). Microtubule structure inCaenorhabditis elegans neurons.Cold Spring Harbor Symp. Quant. Biol. 46:255–261.Google Scholar
  7. Chalfie, M., and Au, M. (1988). Genetic control of differentiation of theCaenorhabditis elegans touch receptor neurons.Science 243:1027–1033.Google Scholar
  8. Chalfie, M., and Sulston, J. (1981). Developmental genetics of the mechanosensory neurons ofCaenorhabditis elegans.Dev. Biol. 82:358–370.Google Scholar
  9. Chalfie, M., and Thomson, J. N. (1979). Organization of neuronal microtubules in the nematodeCaenorhabditis elegans.J. Cell Biol. 82:278–289.Google Scholar
  10. Chalfie, M., and White, J. (1988). The nervous system. In Wood, W. (ed.),The Nematode Caenorhabditis elegans, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 337–391.Google Scholar
  11. Chalfie, M., Horvitz, H. R., and Sulston, J. E. (1981). Mutations that lead to reiterations in the cell lineages ofC. elegans.Cell 24:59–69.Google Scholar
  12. Chalfie, M., Sulston, J. E., White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. (1984). The neural circuits for touch sensitivity inCaenorhabditis elegans.J. Neurosci 5: 956–964.Google Scholar
  13. Coulson, A., Sulston, J., Brenner, S., and Karn, J. (1986). Towards a physical map of the genome of the nematodeCaenorhabditis elegans.Proc. Natl. Acad. Sci. USA 83:7821–7825.Google Scholar
  14. Coulson, A., Waterston, R., Kiff, J., Sulston, J., and Kohara, Y. (1988). Genome linking with yeast artificial chromosomes.Nature 335:184–186.Google Scholar
  15. Culotti, J. G., and Russell, R. L. (1978). Osmotic avoidance defective mutants of the nematodeCaenorhabditis elegans.Genetics 90:243–256.Google Scholar
  16. Desai, C., Garriga, G., McIntire, S. L., and Horvitz, H. R. (1988). A genetic pathway for the development of theCaenorhabditis elegans HSN motorneurons.Nature 336:638–646.Google Scholar
  17. Duband, J. L., Tucker, G. C., Poole, T. J., Vincent, M., Aoyama, H., and Thiery, J. P. (1985). How do the migratory and adhesive properties of the neural crest govern ganglia formation in the avian peripheral nervous system?J. Cell. Biochem. 27:189–203.Google Scholar
  18. Dusenberry, D. B., Sheridan, R. E., and Russell, R. L. (1975). Chemotaxis defective mutants of the nematodeCaenorhabditis elegans.Genetics 80:297–309.Google Scholar
  19. Ferguson, E. L., and Horvitz, H. R. (1985). Identification and characterization of 22 genes that affect the vulval cell lineages of the nematodeCaenorhabditis elegans.Genetics 110:17–72.Google Scholar
  20. Fire, A. (1986). Integrative transformation ofCaenorhabditis elegans.EMBO J. 5:2673–2680.Google Scholar
  21. Garcia-Bellido, A. (1975). Genetic control of wing development inDrosophila.Ciba Found. Symp. 29:161–182.Google Scholar
  22. Gehring, W. J. (1987). Homeo boxes in the study of development.Science 236:1245–1252.Google Scholar
  23. Golden, J. W., and Riddle, D. L. (1982). A pheromone influences larval development in the nematodeCaenorhabditis elegans.Science 218:578–580.Google Scholar
  24. Greenwald, I. S., Sternberg, P. W., and Horvitz, H. R. (1983). Thelin-12 locus specifies cell fate inCaenorhabditis elegans.Cell 34:435–444.Google Scholar
  25. Gundersen, R. W. (1987). Response of sensory neurites and growth cones to patterned substrata of laminin and fibronectinin vitro.Dev. Biol. 121:423–431.Google Scholar
  26. Hall, D. (1977).The Posterior Nervous System of Caenorhabditis elegans, Ph.D. thesis, California Institute of Technology, Pasadena.Google Scholar
  27. Hammarback, J. A., McArthy, J. B., Palm, S. L., Furcht, L. T., and Letorneau, P. C. (1988). Growth cone guidance by substrate-bound laminin pathways is correlated with neuron-to-pathway adhesivity.Dev. Biol. 126:29–39.Google Scholar
  28. Hedgecock, E. M., and Russell, R. L. (1975). Normal and mutant thermotaxis in the nematode,Caenorhabditis elegans.Proc. Natl. Acad. Sci. USA 72:4061–4065.Google Scholar
  29. Hedgecock, E. M., Culotti, J. G., Thomson, J. N., and Perkins, L. A. (1985). Axonal guidance mutants ofCaenorhabditis elegans identified by filling neurons with fluorescein dyes.Dev. Biol. 111:158–170.Google Scholar
  30. Hedgecock, E., Culotti, J., Hall, D., and Stern, B. (1987). Genetics of cell and axon migration inCaenorhabditis elegans.Development 100:365–382.Google Scholar
  31. Hodgkin, J. (1983). Male phenotypes and mating efficiency inCaenorhabditis elegans.Genetics 103:43–64.Google Scholar
  32. Horvitz, H. R., Chalfie, M., Trent, C., Sulston, J. E., and Evans, P. D. (1982). Serotonin and octopamine in the nematodeCaenorhabditis elegans.Science 216:1012–1014.Google Scholar
  33. Johnson, C. D., and Stretton, A. O. W. (1980). Neural control of locomotion inAscaris: Anatomy, electrophysiology and biochemistry. In Zukerman, B. (ed.),Nematodes as Biological Models, Academic Press, New York.Google Scholar
  34. Lewis, J. A., and Hodgkin, J. A. (1977). Specific neuroanatomical changes in chemosensory mutants of the nematodeCaenorhabditis elegans.J. Comp. Neurol. 172:489–510.Google Scholar
  35. Lewis, J. A., Wu, C. H., and Berg, H. (1980a). The genetics of levamisole resistance in the nematodeCaenorhabditis elegans.Genetics 95:905–928.Google Scholar
  36. Lewis, J. A., Wu, C. H., Levine, J. H., and Berg, H. (1980b). Levamisole resistant mutants of the nematodeCaenorhabditis elegans appear to lack pharmacological acetylcholine receptors.Neuroscience 5:967–989.Google Scholar
  37. Lewis, J. A., Elmer, J. S., Skimming, J., McLafferty, S., Fleming, J., and McGee, T. (1987). Cholinergic receptor mutants of the nematodeCaenorhabditis elegans.J. Neurosci. 7: 3059–3071.Google Scholar
  38. Ma, J., and Ptashne, M. (1987a). Deletion analysis of GAL4 defines two transcriptional activating segments.Cell 48:847–853.Google Scholar
  39. Ma, J., and Ptashne, M. (1987b). A new class of yeast transcriptional activators.Cell 51:113–119.Google Scholar
  40. MacLeod, A. R., Karn, J., and Brenner, S. (1981). Molecular analysis of theunc-54 myosin heavy chain gene ofCaenorhabditis elegans.Nature 291:386–390.Google Scholar
  41. Moerman, D. G., Plurad, S., Waterston, R. H., and Baillie, D. L. (1982). Mutations in theunc-54 myosin heavy chain gene ofCaenorhabditis elegans that alter contractility but not muscle structure.Cell 29:773–781.Google Scholar
  42. Moerman, D. G., Benian, G. M., and Waterston, R. H. (1986). Molecular cloning of the muscle geneunc-22 inCaenorhabditis elegans by Tc1 transposon tagging.Proc. Natl. Acad. Sci. 83:2579–2583.Google Scholar
  43. Perkins, L. A., Hedgecock, E. M., Thomson, J. N., and Culotti, J. G. (1986). Mutant sensory cilia in the nematodeCaenorhabditis elegans.Dev. Biol. 117:456–487.Google Scholar
  44. Rand, J. B., and Russell, R. L. (1984). Choline acetyltransferase-deficient mutants of the nematodeCaenorhabditis elegans.Genetics 106:227–248.Google Scholar
  45. Riddle, D. L. (1977). A genetic pathway for dauer larva formation inCaenorhabditis elegans.Stadler Genet. Symp. 9:101–120.Google Scholar
  46. Riddle, D. L. (1988). The dauer larva. In Wood, W. (ed.),The Nematode Caenorhabditis elegans, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  47. Riddle, D. L., Swanson, M. M., and Albert, P. S. (1981). Interacting genes in dauer nematode dauer larva formation.Nature 290:668–671.Google Scholar
  48. Savage, C., Hamelin, M., Culotti, J., Coulson, A., Albertson, D. G., and Chalfie, M. (1989).mec-7 is a beta tubulin gene required for the production of 15 protofilament microtubules inC. elegans.Genes Dev. 3:870–881.Google Scholar
  49. Sulston, J., and Brenner, S. (1974). The DNA ofCaenorhabditis elegans.Genetics 77:95–104.Google Scholar
  50. Sulston, J. E., and Horvitz, H. R. (1981). Abnormal cell lineages in mutants of the nematodeCaenorhabditis elegans.Dev. Biol. 82:41–55.Google Scholar
  51. Trent, C. (1983). Ph.D. thesis, Massachusetts Institute of Technology, Cambridge.Google Scholar
  52. Trent, C., Tsung, N., and Horvitz, H. R. (1984). Egg-laying defective mutants of the nematodeCaenorhabditis elegans.Genetics 104:619–647.Google Scholar
  53. Walrond, J. P., and Stretton, A. O. W. (1985). Excitatory and inhibitory activity in the dorsal musculature of the nematodeAscaris evoked by single dorsal excitatory motoneurons.J. Neurosci. 5:16–23.Google Scholar
  54. Walrond, J. P., Kass, I. S., Stretton, A. O. W., and Donmeyer, J. E. (1985). Identification of excitatory and inhibitory motoneurons in the nematodeAscaris by electrophysiological techniques.J. Neurosci. 5:1–8.Google Scholar
  55. Ward, S. (1973). Chemotaxis by the nematodeCaenorhabditis elegans: Identification of attractants and analysis of the response by the use of mutants.Proc. Natl. Acad. Sci. USA 70:817–821.Google Scholar
  56. Ward, S., Thomson, N., White, J. G., and Brenner, S. (1975). Electron microscopical reconstruction of the anterior sensory anatomy of the nematode,Caenorhabditis elegans.J. Comp. Neurol. 160:313–338.Google Scholar
  57. Ware, R. W., Clark, C., Crossland, K., and Russell, R. L. (1975). The nerve ring of the nematode,Caenorhabditis elegans.J. Comp. Neurol. 162:71–110.Google Scholar
  58. Waterston, R. H., Fishpool, R. M., and Brenner, S. (1977). Mutations affecting paramyosin inCaenorhabditis elegans.J. Mol. Biol. 117:679–697.Google Scholar
  59. Waterston, R. H., Thomson, J. N., and Brenner, S. (1980). Mutants with altered muscle structure inCaenorhabditis elegans.Dev. Biol. 77:271–302.Google Scholar
  60. Way, J., and Chalfie, M. (1988).mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons inC. elegans.Cell 54:5–16.Google Scholar
  61. White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. (1976). The structure of the ventral nerve cord ofCaenorhabditis elegans.Phil. Trans. R. Soc. Lond. B 275:327–348.Google Scholar
  62. White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. (1988). The structure of the nervous system of the nematode.Phil. Trans. R. Soc. Lond. B 314:1–340.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Eve Wolinsky
    • 1
  • Jeffrey Way
    • 2
  1. 1.Department of BiochemistryNew York University Medical SchoolNew York
  2. 2.Department of Biology, Nelson LabsRutgers University (Piscataway)Piscataway

Personalised recommendations