Behavior Genetics

, Volume 23, Issue 1, pp 99–104 | Cite as

The effect of anesthesia on the photoresponses of four sympatric species ofDrosophila

  • Marvin B. Seiger
  • Jovanka F. Kink
Article

Abstract

Five isofemale strains from each of four sympatric species,Drosophila immigrans, D. repleta, D. melanogaster, andD. affinis, were lightly anesthetized with ether, CO2, Flynap, or cold temperature. The photoresponse of each treatment group was measured in an open field and a Y-tube apparatus. Relative light values were compared with those of the unanesthetized control groups of each species, as well as among the different treatments themselves and among species. Significant differences between species were apparent for all treatments in the Y-tube and for all treatments except ether and CO2 in the open field. Response to anesthesia may differ between species due, in part, to their differing genotypes. Comparing treatment groups within species in the Y-tube design, all species exceptD. melanogaster showed significant differences between treatments. In the open field, onlyD. affinis was significantly affected. Particularly in the Y-tube, anesthetized flies generally differed significantly from the controls, indicating that the use of anesthesia during a behavioral study could cause deviations in behavior from that of normal unanesthetized flies.

Key Words

Anesthesia photoresponse phototaxis relative light values behavior Drosophila 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benzer, S. (1973). Genetic dissection of behavior.Sci. Am. 229:24–37.Google Scholar
  2. Carpenter, F. W. (1905). The reactions of the pomace fly (Drosophila ampelophila Loew) to light, gravity, and mechanical stimulation.Am. Nat. 39, 157–171.Google Scholar
  3. Deery, B. J., and Parsons, P. A. (1972). Ether resistance inDrosophila melanogaster.Theor Appl. Genet. 42:208–214.Google Scholar
  4. Farnsworth, M. W. (1968). Effect of prolonged CO2 exposure on flight.Dros. Info. Serv. 43:147.Google Scholar
  5. Gamo, S., Ogaki, M., and Nakashima-Tanaka, E. (1979). Inheritance of chloroform resistance inDrosophila melanogaster.Jpn. J. Genet. 54:229–234.Google Scholar
  6. Gamo, S., Nakashima-Tanaka, E., and Ogaki, M. (1980). Inheritance of halothane resistance inDrosophila melanogaster.Jpn. J. Genet. 55:133–140.Google Scholar
  7. Gamo, S., Megumi, T., Satoh, Y., and Nakashima-Tanaka, E. (1986). Opposing effects between60Co gamma-radiation damage and ether anesthesia in anesthetic-resistant strain ofDrosophila melanogaster: Evidence in chromosomal analysis.Jpn. J. Genet. 61:315–328.Google Scholar
  8. Gilbert, D. G. (1981). Effects of CO2 vs. ether on two mating behavior components ofD. melanogaster.Dros. Info. Serv. 56:45–46.Google Scholar
  9. Gimelfarb, A., and Willis, J. (1988). Etherizing parents reduces the weight of their offspring.Dros. Info. Serv. 67:43.Google Scholar
  10. Götz, K. G., and Biesinger, R. (1985a). Centrophobism inDrosophila melanogaster. I. Behavioral modification induced by ether.J. Comp. Physiol A 156:319–327.Google Scholar
  11. Götz, K. G., and Biesinger, R. (1985b). Centrophobism inDrosophila melanogaster. II. Physiological approach to search and search control.J. Comp. Physiol. A. 156:329–337.Google Scholar
  12. Hadler, N. M. (1964). Heritability and phototaxis inDrosophila melanogaster.Genetics 50:1269–1277.Google Scholar
  13. Joachim, D., and Curtsinger, J. W. (1990). Genotype and anesthetic determine mate choice inDrosophila melanogaster.Behav. Genet. 20:73–79.Google Scholar
  14. Markow, T. A. (1975a). A genetic analysis of phototactic behavior inDrosophila melanogaster. I. Selection in the presence of inversions.Genetics,79:527–534.Google Scholar
  15. Markow, T. A. (1975b). A genetic analysis of phototactic behavior inDrosophila melanogaster. II. Hybridization of divergent populations.Behav. Genet 5:339–350.Google Scholar
  16. Markow, T. A. (1979). Phototactic behavior ofDrosophila species at different temperatures.Am. Nat. 114:884–892.Google Scholar
  17. Markow T. A., and Merriam, J. (1977) Phototactic and Geotactic behavior of countercurrent defective mutants ofDrosophila melanogaster.Behav. Genet. 7:447–455.Google Scholar
  18. Markow, T. A., and Scavarda, N. J. (1977). Effect of age and of screening pigment mutations on the phototactic behavior ofDrosophila melanogaster.Behav. Genet. 7:139–146.Google Scholar
  19. Markow, T. A., and Smith, W. L. (1977) Genetic analysis of phototactic behavior inDrosophila simulans.Genetics 85:273–278.Google Scholar
  20. Matheson, A. C., and Parsons, P. A. (1973). The genetics of resistance to long-term exposure to CO2 inDrosophila melanogaster: An environmental stress leading to anoxia.Theor. Appl. Genet. 43:261–268.Google Scholar
  21. Matheson, A. C., and Parsons, P. A. (1975). Long-term exposure to CO2 inDrosophila melanogaster andDrosophila simulans, using isofemale strains from natural populations.Am. Nat. 109:593–595.Google Scholar
  22. McCrady, W. B., and Clark, M. A. (1983). Variation in response to CO2 inDrosophila melanogaster andD. simulans.J. Hered. 74:171–174.Google Scholar
  23. Miller, G. V., Hansen, K. N., and Stark, W. S. (1981). Phototaxis inDrosophila: R1-6 input and interaction among ocellar and compound eye receptors.J. Insect Physiol. 27:813–819.Google Scholar
  24. Miyan, J. A., and Ewing, A. W. (1985). Is the “click” mechanism of dipteran flight an artifact of CCL4 anaesthesia?J. Exp. Biol. 116:313–322.Google Scholar
  25. Parsons, P. A. (1975). Phototactic responses along a gradient of light intensities for the sibling speciesDrosophila melanogaster andDrosophila simulans.Behav. Genet. 5:17–25.Google Scholar
  26. Pittendrigh, C. S. (1958). Adaptation, natural selection, and behavior. Roe A., and Simpson, G. G. (eds.). InBehavior and Evolution, Yale University Press, New Haven, CT.Google Scholar
  27. Ringo, J. M. (1971). The effects of anesthetization upon survival and behavior ofD. grimshawi.Dros. Info. Serv. 47:118–119.Google Scholar
  28. Rockwell, R. F. (1980). Photobehavioral differentiation in natural populations ofDrosophila: Changes of photoresponse over time inDrosophila pseudoobscura andDrosophila persimilis.Behav. Genet. 10:521–535.Google Scholar
  29. Rockwell, R. F., and Seiger, M. B. (1973a). A comparative study of photoresponse inDrosophila pseudoobscura andDrosophila persimilis.Behav. Genet. 3:163–174.Google Scholar
  30. Rockwell, R. F., and Seiger, M. B. (1973b). Phototaxis inDrosophila: A critical evaluation.Am. Sci. 61:339–345.Google Scholar
  31. Rockwell, R. F., Cooke, F., and Harmsen, R. (1975). Photobehavioral differentiation in natural populations ofDrosophila pseudoobscura andDrosophila persimilis.Behav. Genet. 5:189–202.Google Scholar
  32. Seiger, M. B., and Kertesz, J. A. (1987). The effect of relative humidity on photoresponse in sympatric species ofDrosophila: Short term exposure to desiccating environments.J. Insect Physiol. 33:477–480.Google Scholar
  33. Seiger, M. B., and Khamis, H. J. (1987). A multifactorial behavioral study of coexisting Drosophilid species in nature.Evolution 41:209–217.Google Scholar
  34. Seiger, M. B., and Seiger, L. A. (1979). A comparison of photoresponse in sibling sympatric species ofDrosophila.Am. Nat. 114:893–901.Google Scholar
  35. Seiger, M. B., Seiger, L. A., and Kertesz, J. A. (1983). Photoresponse in relation to experimental design in sibling sympatric species ofDrosophila. Am. Midl. Nat.,109:163–168.Google Scholar
  36. Spassky, B., and Dobzhansky, T. (1967). Responses of various strains ofDrosophila pseudoobscura andDrosophila persimilis to light and gravity.Am. Nat. 101:59–63.Google Scholar
  37. Stark, W. S. (1972). the effect of ether and carbon dioxide on the components of the ERG ofDrosophila.Dros. Info. Serv. 48:82.Google Scholar
  38. Willmund, R., Emanns, A., Eusemann, B., and Roos, W. (1984). Mutants affecting plasticity of phototactic behavior inDrosophila melanogaster.J. Insect Physiol. 30:431–436.Google Scholar
  39. Wogaman, D. J., and Seiger, M.B. (1983). Light intensity as a factor in the choice of an oviposition site byDrosophila pseudoobscura andDrosophila persimilis.Can J. Genet. Cytol. 25:370–377.Google Scholar
  40. Wong, P. T., Kaplan, W. D., Trout, W. E., and Hanstein, B. (1972). Carbon dioxide induced changes in the electroretinogram ofDrosophila unaccompanied by altered phototactic behaviour.J. Insect. Physiol. 18:1493–1500.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Marvin B. Seiger
    • 1
  • Jovanka F. Kink
    • 1
  1. 1.Department of Biological SciencesWright State UniversityDayton

Personalised recommendations