Behavior Genetics

, Volume 24, Issue 3, pp 207–215 | Cite as

Variability and stability in cognitive abilities are largely genetic later in life

  • R. Plomin
  • N. L. Pedersen
  • P. Lichtenstein
  • G. E. McClearn
Article

Abstract

The powerful quantitative genetic design of identical and fraternal twins reared apart (112 pairs) and matched twins reared together (111 pairs) was employed to assess the extent of genetic influence on individual differences in cognitive abilities during the last half of the life span. General cognitive ability yielded a heritability estimate of about .80 in two assessments 3 years apart as part of the Swedish Adoption/Twin Study of Aging. This is one of the highest heritabilities reported for a behavioral trait. Across the two ages, average heritabilities are about .60 for verbal tests, .50 for spatial and speed-of-processing tests, and .40 for memory tests. For general cognitive ability, the phenotypic stability across the 3 years is .92 and stable genetic factors account for nearly 90% this stability. These findings suggest that general cognitive ability is a reasonable target for research that aims to identify specific genes for complex traits.

Key Words

Cognitive abilities intelligence IQ memory twins heritability genetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldhous, P. (1992). The promise and pitfalls of molecular genetics.Science 257:164–165.Google Scholar
  2. Bouchard, T. J., and McGue, M. G. (1981), Familial studies of intelligence: A review.Science 212:1055–1059.Google Scholar
  3. Cardon, L. R., Fulker, J. C., DeFries, J. C., and Plomin, R. (1992). Continuity and change in general cognitive ability from 1 to 7 years.Dev. Psychol. 28:64–73.Google Scholar
  4. Cederlöf, R., and Lorich, U. (1978). The Swedish twin registry. In Nance, W. E. (ed.),Twin Research, Part B. Biology and Epidemiology, Alan R. Liss, New York, pp. 189–196.Google Scholar
  5. Chipuer, H. M., Rovine, J., and Plomin, R. (1990). LISREL modelling: Genetic and environmental influences on IQ revisited.Intelligence 14:11–29.Google Scholar
  6. DeFries, J. C., Vandenberg, G. E., and McClearn, G. E. (1976). The genetics of specific cognitive abilities.Annu. Rev. Genet. 10:179–207.Google Scholar
  7. Fulker, D. W., DeFries, J. C. and Plomin, R. (1988). Genetic influence on general mental ability increases between infancy and middle childhood.Nature 336:767–769.Google Scholar
  8. Fulker, D. W., Cherny, S. S., and Cardon, L. R. (1993). Continuity and change in cognitive development. In Plomin, R., and McClearn, G. E. (eds.),Nature, Nurture, and Psychology, American Psychological Association, Washington, DC, pp. 77–97.Google Scholar
  9. Jensen, A. R. (1987). Theg beyond factor analysis. In Ronning, R. R., Glover, J. A., Conoley, J. C., and Witt, J. C. (eds.),The Influence of Cognitive Psychology on Testing, Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 87–142.Google Scholar
  10. Jöreskog, K. G., and Sörbom, D. (1989).LISREL VII: Estimation of Linear Structural Equation Systems.Computer Programs, National Educational Resources, Chicago.Google Scholar
  11. Kallman, F. J., Feingold, L., and Bondy, E. (1951). Comparative adaptational, social, and psychometric data on the life histories of senescent twin pairs.Am. J. Hum. Genet. 3:65–73.Google Scholar
  12. Kamin, L. J. (1974).The Science and Politics of IQ, Lawrence Erlbaum Associates, Potomac, MD.Google Scholar
  13. Loehlin, J. C. (1989). Partitioning environmental and genetic contributions to behavioral development.Am. Psychol. 44:1285–1292.Google Scholar
  14. Loehlin, J. C., Horn, J. M., and Willerman, L. (1989). Modeling IQ change: Evidence from the Texas Adoption Project.Child Dev. 60:993–1104.Google Scholar
  15. Mangan, G. (1982).The Biology of Human Conduct: East-West Models of Temperament and Personality, Pergamon Press, Elmsford, NY.Google Scholar
  16. McCartney, K., Harris, M. J., and Bernieri, F. (1990). Growing up and growing apart: A developmental meta-analysis of twin studies.Psychol. Bull. 107:226–237.Google Scholar
  17. McClearn, G. E., Plomin, R., Ahern, F. M., Pedersen, N. L., Johansson, B. E. A., and Berg, S. (1990). The origins of variance in the old-old: Octogenarian twins. National Institute of Aging Grant AG08861.Google Scholar
  18. McGue, M., Bouchard, T. J., Iacono, W. G., and Lykken, D. T. (1993). Behavioral genetics of cognitive ability: A life-span perspective. In Plomin, R., and McClearn, G. E. (eds.),Nature, Nurture, and Psychology, American Psychological Association, Washington, DC, pp. 59–76.Google Scholar
  19. Pedersen, N. L. (1993). Genetic and environmental continuity and change in personality. In Bouchard, T. J. Jr., & Propping, P. (eds.),Twins as a Tool of Behavioral Genetics. John Wiley & Sons: West Sussex, England, (pp. 147–162).Google Scholar
  20. Pedersen, N. L., McClearn, G. E., Plomin, R., Nesselroade, J. R., Berg, S., and DeFaire, U. (1991). The Swedish Adoption/Twin Study of Aging: An update.Acta Genet. Med. Gemellol. 40:7–20.Google Scholar
  21. Pedersen, N. L., Plomin, R., Nesselroade, J. R., and McClearn, G. E. (1992). A quantiative genetic analysis of cognitive abilities during the second half of the life span.Psychol. Sci. 3:346–353.Google Scholar
  22. Plomin, R. (1986).Development, Genetics, and Psychology, Lawrence Erlbaum Associates, Hillsdale, NJ.Google Scholar
  23. Plomin, R. (1988). The nature and nurture of cognitive abilities. In Sternberg, R. (ed.),Advances in the Psychology of Human Intelligence, Lawrence Erlbaum Associates, Hillsdale, NJ, Vol. 4, pp. 1–33.Google Scholar
  24. Plomin, R. (1990). The role of inheritance in behavior.Science 248:183–188.Google Scholar
  25. Plomin, R. (1993a). Nature and nurture: Perspective and prospective. In Plomin, R., and McClearn, G. E. (eds.),Nature, Nurture, and Psychology, American Psychological Association, Washington, DC, pp. 457–483.Google Scholar
  26. Plomin, R. (1993b). Molecular genetic investigation of low and high cognitive ability in children.Behav. Genet. 23:561.Google Scholar
  27. Plomin, R., and DeFries, J. C. (1980). Genetics and intelligence: Recent data.Intelligence 4:15–24.Google Scholar
  28. Plomin, R., and Neiderhiser, J. M. (1992). Quantitative genetics, molecular genetics, and intelligence.Intelligence 15:369–387.Google Scholar
  29. Plomin, R., and Thompson, L. A. (1987). Life-span developmental behavioral genetics. In Baltes, P. B., Featherman, D. L., and Lerner, R. M. (eds.),Life-Span Development and Behavior, Lawrence Erlbaum Associates, Hillsdale, NJ, Vol. 8, pp. 1–31.Google Scholar
  30. Plomin, R., Chipuer, H. M., and Neiderhiser J. M. (1994). Behavioral genetic evidence for the importance of nonshared environment. In Hetherington, E. M., Reiss, D., and Plomin, R. (eds.)Separate Social Worlds of Siblings: Impact of Nonshared Environment on Development, Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 1–31.Google Scholar
  31. Wilson, R. S. (1983). The Louisville Twin Study: Developmental synchronies in behavior.Child Dev. 54:298–316.Google Scholar
  32. Wright, R. (1990). Achilles' helix.New Republic July9–16:21–31.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • R. Plomin
    • 1
  • N. L. Pedersen
    • 1
    • 2
  • P. Lichtenstein
    • 2
  • G. E. McClearn
    • 1
  1. 1.Center for Developmental and Health Genetics, S-211 HendersonThe Pennsylvania State UniversityUniversity Park
  2. 2.Division of Epidemiology, Institute of Environmental MedicineThe Karolinska InstituteStockholmSweden

Personalised recommendations