Behavior Genetics

, Volume 19, Issue 1, pp 9–35 | Cite as

Testing structural equation models for twin data using LISREL

  • A. C. Heath
  • M. C. Neale
  • J. K. Hewitt
  • L. J. Eaves
  • D. W. Fulker
Article

Abstract

Simple genetic models can be fitted to twin data using software packages such as LISREL (Jöreskog and Sörbom, 1986a). After discussion of data preparation and routine checks on possible violation of assumptions of the twin method, we illustrate univariate, bivariate, and multivariate genetic models which can be tested in cross-sectional twin data using LISREL. These include models for cohort or cohabitation effects, genotype x sex interaction, and certain types of genotype x environment interaction and genotype-environment correlation.

Key Words

twin data analysis LISREL structural modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartlett, M. S. (1947). The use of transformations.Biometrics 3:39–52.Google Scholar
  2. Boomsma, D. I., and Molenaar, P. C. M. (1986). Using LISREL to analyze genetic and evironmental covariance structure.Behav. Genet. 16:237–250.Google Scholar
  3. Boomsma, D. I., and Molenaar, P. C. M. (1987). The genetic analysis of repeated measures. I. Simplex models.Behav. Genet. 17:111–124.Google Scholar
  4. Boomsma, D. I., Martin, N. G., and Molenaar, P. C. M. (1989a). Resembelances of parents and twins in sports participation and heart rate.Behav. Genet. 19:123–141.Google Scholar
  5. Boomsma, D. I., van den Bree, M. B. M., Orbeleke, J. F., and Molenaar, P. C. M. (1989b). Factor and simplex models for repeated measures: Application to two psychomotor measures of alcohol sensitivity in twins.Behav. Genet. 19:79–96.Google Scholar
  6. Brown, G. W., and Harris, T. (1978).Social Origins of Depression, London, Tavistock.Google Scholar
  7. Browne, M. W. (1984). Asymptotically distribution free methods for the analysis of covariance structures.Br. J. Math. Stat. Psychol. 37:62–83.Google Scholar
  8. Carey, G. (1986). Sibling imitation and contrast effects.Behav. Genet. 16:343–354.Google Scholar
  9. Carey, G. (1987). A general multivariate approach to linear modelling in human genetics.Am. J. Hum. Genet. 39:775–786.Google Scholar
  10. Cloninger, C. R. (1987). Neurogenetic adaptive mechanisms in alcoholism.Science 236:410–416.Google Scholar
  11. Cloninger, C. R., Rice, J., and Reich, T. (1979). Multifactorial inheritance with cultural transmission and assortative mating. II. A general model of combined polygenic and cultural inheritance.Am. J. Hum. Genet. 31:135–145.Google Scholar
  12. Cox, A., Rutter, M., Yule, B., and Quinton, D. (1977). Bias resulting from missing information: Some epidemiological findings.Br. J. Prev. Soc. Med. 31:131–136.Google Scholar
  13. DeFries, J., and Fulker, D. W. (1985). Multiple regression analysis of twin data.Behav. Genet. 15:467–474.Google Scholar
  14. Eaves, L. J. (1976). A model for sibling effects in man.Heredity 36:205–214.Google Scholar
  15. Eaves, L. J. (1977). Inferring the causes of human variation.J. Roy. Stat. Soc. Ser. B 140:324–355.Google Scholar
  16. Eaves, L. J. (1979). The use of twins in the analysis of assortative mating.Heredity 43:399–409.Google Scholar
  17. Eaves, L. J. (1982). The utility of twins. In Anderson, V. E. (ed.),Genetic Basis of the Epilepsies, Raven, New York.Google Scholar
  18. Eaves, L. J., and Eysenck, H. J. (1975). The nature of extraversion: A genetical analysis.J. Personal. Soc. Psychol. 32:102–112.Google Scholar
  19. Eaves, L. J., Last, K. A., Martin, N. G., and Jinks, J. L. (1977). A progressive approach to non-additivity and genotype-environmental covariance in the analysis of human differences.Br. J. Math. Stat. Psychol 30:1–42.Google Scholar
  20. Eaves, L. J., Last, K. A., Young, P. A., and Martin, N. G. (1978). Model fitting approaches to the analysis of human behaviour.Heredity 41:249–320.Google Scholar
  21. Eaves, L. J., Fulker, D. W., and Heath, A. (1989). The effects of social homogamy and cultural inheritance on the covariances of twins and their parents: A LISREL model.Behav. Genet. 19:113–122.Google Scholar
  22. Eysenck, H. J., and Eysenck, S. B. G. (1975).Manual of the Eysenck Personality Questionnaire, Hodder and Stoughton, London.Google Scholar
  23. Falconer, D. S. (1982).Introduction to Quantitative Genetics, Oliver and Boyd, Edinburgh.Google Scholar
  24. Fulker, D. W. (1982). Extensions of the classical twin method.Proceedings of the 1981 International Congress of Human Genetics, Jerusalem, Alan R. Liss, New York.Google Scholar
  25. Fulker, D. W., Baker, L. A., and Bock, R. D. (1983). Estimating components of covariance using LISREL.Data Anal. Comm. Comp. Data Anal. 1:5–8.Google Scholar
  26. Harman, H. H. (1976).Modern Factor Analysis. University of Chicago Press, Chicago.Google Scholar
  27. Heath, A. C. (1987). The analysis of marital interaction in cross-sectional twin data.Acta Genet. Med. Gemellol. 36:41–49.Google Scholar
  28. Heath, A. C., and Eaves, L. J. (1985). Resolving the effects of phenotype and social back-ground on mate selection.Behav. Genet. 15:15–30.Google Scholar
  29. Heath, A. C., Kendler, K. S., Eaves, L. J., and Markell, D. (1985). The resolution of cultural and biological inheritance: Informativeness of different relationships.Behav. Genet. 15:439–465.Google Scholar
  30. Heath, A. C., Jardine, R., Martin, N. G. (1988a). Interactive effects of genotype and social environment on alcohol consumption in female twins.J. Stud. Alcohol (in press).Google Scholar
  31. Heath, A. C., Jardine, R., Evans, L. J., and Martin, N. G. (1988b). The genetic structure of personality I.Personal. Indiv. Diff. 9:59–67.Google Scholar
  32. Hewitt, J. K., Eaves, L. J., Neale, M. C., and Meyer, J. M. (1988). Resolving the causes of developmental continuity or “tracking.” I. Longitudinal twin studies during growth.Behav. Genet. 18:133–151.Google Scholar
  33. Holt, S. (1968).The Genetics of Dermal Ridges, Thomas, Springfield, Ill.Google Scholar
  34. Hopper, J. L., and Culross, P. R. (1983). Covariation between family members as a function of cohabitation history.Behav. Genet. 13:459–471.Google Scholar
  35. Hopper, J. L., and Mathews, J. D. (1983). Extensions to multivariate normal models for pedigree analysis. II. Modeling the effect of shared environment in blood lead levels.Am. J. Epidemiol. 117:344–355.Google Scholar
  36. Jardine, R. (1985).A Twin Study of Personality, Social Attitudes and Drinking Behavior. Unpublished Ph.D. thesis, Australian National University.Google Scholar
  37. Jardine, R., and Martin, N. G. (1984). Causes of variation in drinking habits in a large twin sample.Acta Genet. Med. Gemellol. 33:435–450.Google Scholar
  38. Jöreskog, K. G. (1978). Structural analysis of covariance and correlation matrices.Psychometrika 36:409–426.Google Scholar
  39. Jöreskog, K. G., and Sörbom, D. (1986a).LISREL VI, Scientific Software, Mooresville, Ind.Google Scholar
  40. Jöreskog, K. G., and Sörbom, D. (1986b).PRELIS: A Preprocessor for LISREL, Scientific Software, Mooresville, Ind.Google Scholar
  41. Kaprio, J., Koskenvuo, M. D., Langinvainio, H., Romanov, K., Sarna, S., and Rose, R. (1987). Genetic influences on use and abuse of alcohol: A study of 5638 adult Finnish brothers.Alc. Clin. Exp. Res. 11:349–356.Google Scholar
  42. Kendler, K. S., Heath, A. C., Martin, N. G., and Eaves, L. J. (1986). Symptoms of anxiety and depression in a volunteer twin population: The etiologic role of genetic and environmental factors.Arch. Gen. Psychiat. 43:213–221.Google Scholar
  43. Kendler, K. S., Heath, A. C., Martin, N. G., and Eaves, L. J. (1987). Symptoms of anxiety and symptoms of depression: Same genes, different environments?Arch. Gen. Psychiat. 44:451–460.Google Scholar
  44. Kessler, R., and Greenberg, D. F. (1981).Linear Panel Analysis: Models of Quantitative Change, Plenum Press, New York.Google Scholar
  45. Lange, K. (1986). Cohabitation, convergence and environmental covariances.Am. J. Med. Genet. 24:483–491.Google Scholar
  46. Lange, K., Westlake, J., and Spence, M. A. (1976). Extensions to pedigree analysis. III. Variance components by the scoring method.Ann. Hum. Genet. 39:485–491.Google Scholar
  47. Lykken, D. T., Tellegen, A., and DeRubeis, R. (1978). Volunteer bias in twin research: The rule of two-thirds.Soc. Biol. 25:1–9.Google Scholar
  48. Lykken, D. T., McGue, M., and Tellegen, A. (1987). Recruitment bias in twin research: The rule of two-thirds reconsidered.Behav. Genet. 17:343–362.Google Scholar
  49. Martin, N. G., and Boomsma, D. I. (1989). Willingness to drive when drunk and personality: A twin study.Behav. Genet. 19:97–111.Google Scholar
  50. Martin, N. G., and Eaves, L. J. (1977). The genetical analysis of covariance structure.Heredity 28:79–95.Google Scholar
  51. Martin, N. G., Eaves, L. J., Heath, A. C., Jardine, R., Feingold, L. M., and Eysenck, H. J. (1986). Transmission of social attitudes.Proc. Natl. Acad. Sci. 83:4364–4368.Google Scholar
  52. Martin, N. G., and Wilson, S. R. (1982). Bias in the estimation of heritability from truncated samples of twins.Behav. Genet. 12:467–472.Google Scholar
  53. McArdle, J., and Goldsmith, H. H. (1984). Structural equation modeling applied to the twin design: Comparative multivariate models of the WAIS.Behav. Genet. 14:609.Google Scholar
  54. Molenaar, P. C. M., and Boomsma, D. I. (1987). Application of nonlinear factor analysis to genotype-environment interaction.Behav. Genet. 17:71–80.Google Scholar
  55. Neale, M. C., and Martin, N. G. (1989). The effects of age, sex, and genotype on self-report drunkenness following a challenge dose of alcohol.Behav. Genet. 19:63–78.Google Scholar
  56. Neale, M. C., Eaves, L. J., Hewitt, J. K., and Kendler, K. S. (1989a). Bias in correlations from truncated samples of twins.Behav. Genet. 19:(in press).Google Scholar
  57. Neale, M. C., Heath, A. C., Hewitt, J. K., Eaves, L. J., and Fulker, D. W. (1989b). Fitting genetic models with LISREL: Hypothesis testing.Behav. Genet. 19:37–49.Google Scholar
  58. Olsson, U. (1979). Maximum likelihood estimation of the polychoric correlation coefficient.Psychometrika 44:443–460.Google Scholar
  59. Olsson, U., Drasgow, F., and Dorans, N. J. (1982). The polyserial correlation coefficient.Psychometrika 47:337–347.Google Scholar
  60. Plomin, R., DeFries, J. C., and Loehlin, J. L. (1977). Genotype-environment interaction and correlation in the analysis of human variation.Psychol. Bull. 84:309–322.Google Scholar
  61. Rao, D. C., Morton, N. E., and Yee, S. (1976). Resolution of cultural and biological inheritance by path analysis.Am. J. Hum. Genet. 28:228–242.Google Scholar
  62. SAS Institute (1985).SAS User's Guide: Statistics, Version 5 Edition, SAS, Cary, N.C.Google Scholar
  63. Scarr, S., and McCartney, K. (1983). How people make their own environments: A theory of genotype-environment effects.Child. Dev. 54:424–435.Google Scholar
  64. Silberg, J. L., Martin, N. G., and Heath, A. C. (1987). Genetic and environmental factors in primary dysmenorrhea and its relationship to anxiety, depression, and neuroticism.Behav. Genet. 17:363–383.Google Scholar
  65. Vogler, G. P., and Fulker, D. W. (1983). Familial resemblance for educational attainment.Behav. Genet. 13:341–354.Google Scholar
  66. Wright, S. (1968).Evolution and the Genetics of Populations, Vol. 1, University of Chicago Press, Chicago.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • A. C. Heath
    • 1
  • M. C. Neale
    • 1
  • J. K. Hewitt
    • 1
  • L. J. Eaves
    • 1
  • D. W. Fulker
    • 2
  1. 1.Department of Human Genetics, Medical College of VirginiaMCV StationRichmond
  2. 2.Institute for Behavioral GeneticsUniversity of ColoradoBoulder

Personalised recommendations