Advertisement

Behavior Genetics

, Volume 21, Issue 3, pp 271–294 | Cite as

Genetic differences in learning behavior in honeybees (Apis mellifera capensis)

  • Ch. Brandes
Article

Abstract

Workers from colonies of Cape honeybees show marked phenotypic differences in performance in proboscis extension reflex (PER) conditioning. Analysis of these differences using parthenogenetic offspring groups permitted the estimation of genotypic values and revealed a high degree of genetic variability that is evident among related as well as unrelated bees. The results obtained from related groups are of particular importance, since they demonstrated the existence of strong genetic variability among individuals of the same colony. Quantitative analysis yielded high estimates of additive genetic effects and low estimates of dominance effects. Selection of individual workers resulted in an explicit increase in genetic variance of the next generation (G1). However, selection of bees from the parthenogenetic G1 generation, which was done to obtain parthenogenetic G2 offspring, did not lead to further improvement in selection. This observation suggests that recombination of linked genes underlying proboscis extension reflex was neglible during selection in parthenogenetic groups. Taken together with further behavioral analysis (Brandes and Menzel, 1990; Brandes et al., 1988), results from these quantitative genetic experiments suggest that additive genetic factors contribute significantly to variability among individuals for associative learning.

Key Words

Apis mellifera honeybees learning genetics selection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R. H. (1963). The laying worker in the Cape honeybeeApis mellifera capensis.J. Apic. Res. 2:85–92.Google Scholar
  2. Bitterman, M. E., Menzel, R., Fietz, A., and Schäfer, S. (1983). Classical conditioning of proboscis extension in honeybees (Apis mellifera).J. Comp. Psych. 97:107–109.Google Scholar
  3. Brandes, Ch. (1987). Effects of selection on learning behavior in honeybees (Apis mellifera capensis). In Rembold, H., and Eder, J. (eds.),Chemistry and Biology of Social Insects, Verlag J. Peperny, München, pp. 192–193.Google Scholar
  4. Brandes, Ch. (1988). Estimation of heritability of learning behavior in honeybees (Apis mellifera capensis).Behav. Genet. 18:119–132.PubMedGoogle Scholar
  5. Brandes, Ch., and Menzel, R. (1990). Common mechanisms in proboscis extension conditioning and visual learning revealed by genetic selection in honeybees (Apis mellifera capensis).J. Comp. Physiol. 166:545–552.Google Scholar
  6. Brandes, Ch., Frisch, B., and Menzel, R. (1988). Time course of memory formation in honeybee lines selected for good and poor learning.Anim. Behav. 36:981–985.Google Scholar
  7. Calderone, N. W., and Page, R. E. (1988). Genotypic variability in age polyethism and task specialization in the honeybee, Apis mellifera (Hymenoptera: Apidae).Behav. Ecol. Sociobiol. 22:17–25.Google Scholar
  8. Cornuet, J.-M., Daoudi, A., and Chevalet, C. (1986). Genetic pollution and number of matings in a black honeybee (Apis mellifera mellifera) population.Theor. Appl. Genet. 73:223–227.Google Scholar
  9. Falconer, D. S. (1981).Introduction to Quantitative Genetics, 2nd ed., Longmans, London.Google Scholar
  10. Frumhoff, P. C., and Baker, J. (1988). A genetic component to division of labor within honeybee colonies.Nature 333:358–361.Google Scholar
  11. Hillesheim, E., Koeniger, N., and Moritz, R. F. A. (1989). Colony performance in honeybees (Apis mellifera capensis Esch.) depends on the proportion of subordinate and dominant workers.Behav. Ecol. Sociobiol. 24:291–296.Google Scholar
  12. Kuwabara, M. (1975). Bildung des bedingten Reflexes von Pavlovs Typus bei der HonigbieneApis mellifica.Hokkaido Univ. Zool. J. 23 Fac. Sci. 13:458–464.Google Scholar
  13. Laidlaw, H. H., and Page, R. E. (1984). Polyandry in honeybees (Apis mellifera L.). Sperm utilization and intracolony relationships.Genetics 108:985–997.Google Scholar
  14. Lauer, J., and Lindauer, M. (1971). Genetisch fixierte Lerndispositionen bei der Honigbiene. InInformationsaufnahme und Informationsverabeitung im lebenden Organismus. Abh. Akad. Wiss. Mainz 1:1–87.Google Scholar
  15. Lauer, J., and Lindauer, M. (1985). Lernprozesse im Orientierungsverlauf der Honigbiene. Ein rassenspezifischer Vergleich von Apis mellifica carnica und Apis mellifica ligustica.Abh. Akad. Wiss. Mainz 2:1–88.Google Scholar
  16. Lindauer, M. (1952). Ein Beitrag zur Frage der Arbeitsteilung im Bienenstaat.Z. vergl. Physiol. 34:299–345.Google Scholar
  17. Menzel, R. (1969). Das Gedächtnis der Honigbiene für Spektralfarben. II. Umlernen und Mehrfachlernen.Z. vergl. Physiol. 56:329–334.Google Scholar
  18. Menzel, R., and Bitterman, M. E. (1983). Learning by honeybees in an unnatural situation. In Huber, F., and Markl, H. (eds.),Neuroethology and Behavioral Physiology, Springer Verlag, Berlin, Heidelberg, New York, pp. 206–215.Google Scholar
  19. Menzel, R., Freudel, H., and Rühl, U. (1973). Rassenspezifische Unterschiede im Lernverhalten der Honigbiene (Apis mellifica L.).Apidologie 4(1):1–24.Google Scholar
  20. Menzel, R., Frber, J., and Masuhr, Th. (1974). Learning and memory in the honeybee. In Barton Browne, L. (ed.),Experimental Analysis of Insect Behaviour, Springer Verlag, Berlin, Heidelberg, New York, pp. 195–217.Google Scholar
  21. Moritz, R. F. A. (1983). Homogeneous mixing of honeybee semen.J. Apic. Res. 22:249–255.Google Scholar
  22. Moritz, R. F. A. (1986). Intracolonial worker relationship and sperm competition in the honeybee (Apis mellifera L.).Experientia 42:455–458.Google Scholar
  23. Moritz, R. F. A., and Brandes, Ch. (1987). Behavior genetics of honey bees (Apis mellifera L.). In Menzel, R., and Mercer, E. (eds.),Neurobiology and Behavior in Honeybees, Springer Verlag, Berlin, Heidelberg, New York.Google Scholar
  24. Moritz, R. F. A., and Hillesheim, E. (1985). Inheritance of dominance in honeybees (Apis mellifera capensis Esch.).Behav. Ecol. Sociobiol. 17:87–89.Google Scholar
  25. Oldroyd, B., and Moran, C. (1983). Heritability of worker characters in the honeybee (Apis mellifera).Aust. J. Biol. Sci. 36:323–332.Google Scholar
  26. Robinson, G. E., and Page, R. E. (1988). Genetic determination of guarding and undertaking in honeybee colonies.Nature 333:356–358.Google Scholar
  27. Robinson, G. E., Page, R. E., Strambi, C., and Strambi, A. (1989). Hormonal and genetic control of behavioral integration in honeybee colonies.Science 246:109–112.Google Scholar
  28. Rothenbuhler, W. C. (1967). Genetic and evolutionary considerations of social behavior of honeybees and some related insects. In Hirsch, J. (ed.),Behavior-Genetic Analysis, McGraw-Hill, New York, pp. 61–106.Google Scholar
  29. Ruttner, F. (1977). The problem of the Cape bee (Apis mellifera capensis Escholtz): Parthenogenesis—size of populations—evolution.Apidologie 8:281–294.Google Scholar
  30. Ruttner, F., and Hesse, B. (1981). Rassenspezifische Unterschiede in der Ovarentwicklung und Eiablage von weisellosen Arbeiterinnen der HonigbieneApis mellifera L. Apidologie 12(2):159–183.Google Scholar
  31. Sachs, L. (1984).Angewandte Statistik, Springer Verlag, Berlin.Google Scholar
  32. Seeley, T. D., and Levien, R. A. (1987). Social foraging by honeybees: How a colony tracks rich sources of nectar. In Menzel, R., and Mercer, E. (eds.),Neurobiology and Behavior in Honeybees, Springer Verlag, Berlin, Heidelberg, New York, pp. 21–35.Google Scholar
  33. Velthuis, H. H. W. (1970). Ovarian development in Apis mellifera worker bees.Entomol. Exp. Appl. 13:377–394.Google Scholar
  34. Verma, S., and Ruttner, F. (1983). Cytological analysis of the thelytokous parthenogenesis in the Cape honeybee (Apis mellifera capensis ESCHOLTZ).Apidologie 14:(1):41–57.Google Scholar
  35. Weber, E. (1967).Grundriss der biologischen Statistik, Gustav Fischer Verlag, Stuttgart.Google Scholar
  36. Winston, M. L., and Fergusson, L. A. (1985). The effect of worker loss on temporal caste structure in colonies of the honeybee (Apis mellifera L.).Can. J. Zool. 63:777–780.Google Scholar
  37. Wright, S. (1922). Coefficients of inbreeding and relationship.Am Nat. 56:330–338.Google Scholar
  38. Woyke, J. (1986). Sex determination. In Rinderer, Th. E. (ed.),Bee Genetics and Breeding, Academic Press, Orlando, pp. 91–119.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Ch. Brandes
    • 1
    • 2
  1. 1.Institut für Bienenkunde (Polytechn. Gesellschaft)Fachbereich Biologie der Universität FrankfurtOberurselGermany
  2. 2.Institut für TierphysiologieNeurobiologie der FU BerlinBerlin 33Germany

Personalised recommendations