Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mating ability in laboratory-adapted and field-derivedDrosophila melanogaster: The stress of domestication

  • 46 Accesses

  • 7 Citations


Mating ability differences between flies of different alcohol dehydrogenase (Adh) genotypes have been assessed in the temperature range 15 to 29°C for laboratory-adapted and field-derivedDrosophila melanogaster. Significant differences amongAdh genotypes were detected principally for the laboratory-adapted strains due to departures from random mating associated with heterozygote superiority at the relatively extreme temperature of 29°C, although mating ability differences could not be attributed directly to theAdh locus. The difference between the laboratory and the field populations can be explained by the effects of genetic back-ground manifested in the form of fitness differences, being enhanced for the laboratory-adapted flies as a consequence of the stress of laboratory culture. In contrast with larval survival and development time, laboratory and field flies do not differe appreciably in their overall abilities to obtain mates, which indicates that mating ability is a direct fitness character not greatly affected by laboratory culture. It follows that direct fitness traits are the least amenable to change under domestication.

This is a preview of subscription content, log in to check access.


  1. Alcock, J. (1979).Animal Behavior, Sinauer, Sunderland, Mass.

  2. Aslund, S., and Rasmuson, M. (1976). Mating behaviour as a fitness component in maintaining allozyme polymorphism inDrosophila melanogaster.Hereditas 82:175–178.

  3. Boice, R. (1973). Domestication.Psychol. Bull. 80:215–230.

  4. Bösiger, E. (1960). Sur le rôle de la sélection sexuelle dans l'évolution.Experientia 16:270–273.

  5. Bösiger, E. (1962). Sur le degré d'heterozygotie des populations naturelles leDrosophila melanogaster et son maintien par la śelection sexuelle.Bull. Biol. Fr. Belg. 96:3–122.

  6. Bösiger, E. (1974). The role of sexual selection in the maintenance of the genetical heterogeneity of Drosophila populations and its genetic basis.Frontiers Biol. 38:167–184.

  7. Carson, H. L. (1987). The contribution of sexual behavior to Darwinian fitness.Behav. Genet. 17:597–611.

  8. Clutton-Brock, T. H., Guiness, F. E., and Alton, S. D. (1982).Red Deer: Behavior and Ecology of Two Sexes, University of Chicago Press, Chicago.

  9. David, J. R. (1982). Latitudinal variability ofDrosophila melanogaster: Allozyme frequencies divergence between European and Afrotropical populations.Biochem. Genet. 20:747–761.

  10. Ehrman, L. (1970). The mating advantage of rare males inDrosophila.Proc. Natl. Acad. Sci. 65:345–348.

  11. Fisher, R. A. (1958).The Genetical Theory of Natural Selection, 2nd Ed., Dover, New York.

  12. Frank, H. (1980). Evolution of canine information processing under conditions of natural and artificial selection.Z. Tierpsychol. 53:389–399.

  13. Franklin, I. R. (1981). An analysis of temporal variation at isozyme loci inDrosophila melanogaster. In Gibson, J. B., and Oakeshott, J. G. (eds.),Genetic Studies of DrosophilaPopulations, Australian National University Press, Canberra, pp. 217–236.

  14. Gailey, D. A., Hall, J. C., and Siegel, R. W. (1985). Reduced reproductive success for a conditioning mutant in experimental populations ofDrosophila melanogaster.Genetics III:795–804.

  15. Hamilton, W. D., and Zuck, M. (1982). Heritable true fitness and bright birds: A role for parasites.Science 218:384–387.

  16. Johnson, F. M., and Shaffer, H. E. (1973). Isozyme variability in species of the genusDrosophila. VII. Genotype-environment relationships in populations ofD. melanogaster from the Eastern United States.Biochem. Genet. 10:149–163.

  17. Kaul, D., and Parsons, P. A. (1966). Competition between males in the determination of mating speed inDrosophila pseudoobscura.Aust. J. Biol. Sci. 19:945–947.

  18. Kirkpatrick, M. (1982). Sexual selection and the evolution of female choice.Evolution 36:1–11.

  19. Knoppien, P., Pot, W., and van Delden, W. (1980). Effects of rearing conditions and age on the difference in mating success between alcohol dehydrogenase genotypes ofDrosophila melanogaster.Genetica 51:197–202.

  20. Kohane, M. J., and Parsons, P. A. (1986). Environment-dependent fitness differences inDrosophila melanogaster: Temperature, domestication and the alcohol dehydrogenase locus.Heredity 57:289–304.

  21. Lande, R. (1981). Models of speciation by sexual selection on polygenic traits.Proc. Natl. Acad. Sci. 78:3721–3725.

  22. McKenzie, J. A. (1978). The effect of developmental temperature on population flexibility inDrosophila melanogaster andD. simulans.Aust. J. Zool. 26:105–112.

  23. McKenzie, J. A., and Fegent, J. C. (1980). Mating patterns of virgin and inseminatedDrosophila melanogaster of different alcohol dehydrogenase (Adh) genotypes.Experientia 36:1160–1161.

  24. McKenzie, J. A., and McKechnie, S. W. (1981). The alcohol dehydrogenase polymorphism in a vineyard cellular population ofDrosophila melanogaster. In Gibson, J. B., and Oakeshott, J. G. (eds.),Genetic Studies of DrosophilaPopulations Australian National University Press, Canberra, pp. 201–215.

  25. Malpica, J. M., and Vassallo, J. M. (1980). A test for the selective origin of environmentally correlated allozyme patterns.Nature 286:407–408.

  26. Majerus, M. E. N., O'Donald, P., Kearns, P. W. E., and Ireland, H. (1986). Genetics and evolution of female choice.Nature 321:164–167.

  27. Oakeshott, J. G., Gibson, J. B., Anderson, P. R., Knibb, W. R., Anderson, D. G., and Chambers, G. K. (1982). Alcohol dehydrogenase and glycerol-3-phosphate dehydrogenase clines inDrosophila melanogaster on different continents.Evolution 36:86–96.

  28. Oakeshott, J. G., Gibson, J. B., and Wilson, S. R. (1984a). Selective effects of the genetic background and ethanol on the alcohol dehydrogenase polymorphism inDrosophila melanogaster.Heredity 53:51–67.

  29. Oakeshott, J. G., McKechnie, S. W., and Chambers, G. K. (1984b). Population genetics of the metabolically related Adh, Gpdh and Tpi polymorphisms inDrosophila melanogaster. I. Geographic variation in Gpdh and Tpi allele frequencies in different continents.Genetica 63:21–29.

  30. O'Donald, P. (1980).Genetic Models of Sexual Selection, Cambridge University Press, New York.

  31. Parsons, P. A. (1974). Male mating speed as a component of fitness inDrosophila.Behav. Genet. 4:395–403.

  32. Parsons, P. A. (1983).The Evolutionary Biology of Colonizing Species, Cambridge University Press, New York.

  33. Parsons, P. A. (1986). Evolutionary rates under environmental stress.Evol. Biol. 21:311–347.

  34. Parsons, P. A., and Kaul, D. (1966). Mating speed and duration of copulation inDrosophila pseduoobscura.Heredity 21:219–225.

  35. Partridge, L., and Harvey, P. (1986). Contentious issues in sexual selection.Nature 323:580–581.

  36. Pot, W., van Delden, W., and Kruijt, J. P. (1980). Genotypic differences in mating success and the maintenance of the alcohol dehydrogenase polymorphism inDrosophila melanogaster: No evidence for overdominance or rare genotype mating advantage.Behav. Genet. 10:43–58.

  37. Price, E. O. (1984). Behavioral aspects of animal domestication.Q. Rev. Biol. 59:1–32.

  38. Richmond, R., and Senier, A. (1981). Esterase-6 ofDrosophila melanogaster: Kinetics of transfer to females, decay in females and male recovery.J. Insect Physiol. 27:849–853.

  39. Richmond, R., Gilbert, D., Sheehan, G., Gromko, M., and Butterworth, F. (1980). Esterase-6 and reproduction inD. melanogaster.Science 207:1483–1485.

  40. Santos, M., Tarrio, R., Zapata, C., and Alvarez, G. (1986). Sexual selection on chromosomal polymorphism inDrosophila subobscura.Heredity 57:161–169.

  41. Spiess, E. B. (1970). Mating propensity and its genetic basis inDrosophila. In Hecht, M. K., and Steere, W. C. (eds.),Essays in Evolution and Genetics in Honor of Theodosius Dobzhansky, Appleton-Century-Crofts, New York, pp. 315–379.

  42. Thornhill, R., and Alcock, J. (1983).The Evolution of Insect Mating Systems, Harvard University Press, Cambridge, Mass.

  43. Trivers, R. L. (1972). Parental investment and sexual selection. In Campbell, B. (ed.),Sexual Selection and the Descent of Man 1871–1971, Aldine, Chicago, pp. 136–179.

  44. van Delden, W. (1982). The alcohol dehydrogenase polymorphism inDrosophila melanogaster.Evol. Biol. 15:187–222.

  45. van Delden, W., Boerema, A. C., and Kamping, A. (1978). The alcohol dehydrogenase polymorphism in populations ofDrosophila melanogaster. I. Selection in different environments.Genetics 90:161–191.

  46. Zawistowski, S., and Richmond, R. C. (1985). Experience mediated courtship reduction and competition for mates by maleDrosophila melanogaster.Behav. Genet. 15:561–569.

  47. Zouros, E., Loukas, M., Economopolous, A., and Muzomenos, B. (1982). Selection at the alcohol dehydrogenase locus of the live fruit flyDacus oleae under artificial rearing.Heredity 48:169–185.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kohane, M.J., Parsons, P.A. Mating ability in laboratory-adapted and field-derivedDrosophila melanogaster: The stress of domestication. Behav Genet 17, 541–558 (1987).

Download citation

Key Words

  • mating ability
  • sexual selection
  • fitness
  • stress
  • domestication
  • Drosophila